AWS Bedrock 知识 - 基础测试脚本

霞舞
发布: 2024-11-02 12:33:27
转载
1066人浏览过

aws bedrock 知识 - 基础测试脚本

这是一个简单但有用的测试脚本,可帮助您快速测试和验证您的 aws bedrock + kb 设置。如果不同,只需更新您的 aws 区域,然后插入您的 bedrock kb id。

import boto3
import json
import time
from datetime import datetime
def test_kb_setup():
    """Test function to verify Bedrock Knowledge Base setup and queries"""
    # Initialize clients
    bedrock_agent = boto3.client('bedrock-agent-runtime', region_name='us-east-1')
    bedrock_runtime = boto3.client('bedrock-runtime', region_name='us-east-1')
    # Your Knowledge Base ID
    kb_id = "**your-knowledge-base-id**"  # Replace with your actual KB ID
    def test_kb_query(query_text):
        """Test a single knowledge base query"""
        print(f"\nTesting query: '{query_text}'")
        print("-" * 50)
        try:
            # Query the knowledge base
            response = bedrock_agent.retrieve(
                knowledgeBaseId=kb_id,
                retrievalQuery={'text': query_text},
                retrievalConfiguration={
                    'vectorSearchConfiguration': {
                        'numberOfResults': 3
                    }
                }
            )
            # Print raw response for debugging
            print("\nRaw Response:")
            print(json.dumps(response, indent=2, default=str))
            # Process and print retrieved results
            print("\nProcessed Results:")
            if 'retrievalResults' in response:
                for i, result in enumerate(response['retrievalResults'], 1):
                    print(f"\nResult {i}:")
                    print(f"Score: {result.get('score', 'N/A')}")
                    print(f"Content: {result.get('content', {}).get('text', 'N/A')}")
                    print(f"Location: {result.get('location', 'N/A')}")
            else:
                print("No results found in response")
            return True
        except Exception as e:
            print(f"Error during query: {str(e)}")
            return False
    def test_kb_with_bedrock(query_text):
        """Test knowledge base integration with Bedrock"""
        print(f"\nTesting KB + Bedrock integration for: '{query_text}'")
        print("-" * 50)
        try:
            # First get KB results
            kb_response = bedrock_agent.retrieve(
                knowledgeBaseId=kb_id,
                retrievalQuery={'text': query_text},
                retrievalConfiguration={
                    'vectorSearchConfiguration': {
                        'numberOfResults': 3
                    }
                }
            )
            # Format context from KB results
            context = ""
            if 'retrievalResults' in kb_response:
                context = "\n".join([
                    f"Reference {i+1}:\n{result.get('content', {}).get('text', '')}\n"
                    for i, result in enumerate(kb_response['retrievalResults'])
                ])
            # Prepare Bedrock prompt
            enhanced_prompt = (
                f"Using the following references:\n\n{context}\n\n"
                f"Please answer this question: {query_text}\n"
                "Base your response on the provided references and clearly cite them when used."
            )
            # Get Bedrock response
            bedrock_response = bedrock_runtime.invoke_model(
                modelId="anthropic.claude-v2",
                body=json.dumps({
                    "prompt": f"\n\nHuman: {enhanced_prompt}\n\nAssistant:",
                    "max_tokens_to_sample": 500,
                    "temperature": 0.7,
                    "top_p": 1,
                }),
                contentType="application/json",
                accept="application/json",
            )
            response_body = json.loads(bedrock_response.get('body').read())
            final_response = response_body.get('completion', '').strip()
            print("\nBedrock Response:")
            print(final_response)
            return True
        except Exception as e:
            print(f"Error during KB + Bedrock integration: {str(e)}")
            return False
    # Run test queries
    test_queries = [
        "What are our company's remote work policies?",
        "Tell me about employee benefits",
        "What is the vacation policy?",
        "How does the performance review process work?",
        "What are the working hours?"
    ]
    print("Starting Knowledge Base Tests")
    print("=" * 50)
    # Test 1: Basic KB Queries
    print("\nTest 1: Basic Knowledge Base Queries")
    for query in test_queries:
        success = test_kb_query(query)
        if not success:
            print(f"Failed on query: {query}")
    # Test 2: KB + Bedrock Integration
    print("\nTest 2: Knowledge Base + Bedrock Integration")
    for query in test_queries:
        success = test_kb_with_bedrock(query)
        if not success:
            print(f"Failed on integration test: {query}")
if __name__ == "__main__":
    test_kb_setup()
登录后复制

以上就是AWS Bedrock 知识 - 基础测试脚本的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
相关标签:
ai
来源:dev.to网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号