
请我喝杯咖啡☕
*备忘录:
eq() 可以检查第一个 0d 或更多 d 张量的零个或多个元素是否等于第二个 0d 或更多 d 张量的零个或多个元素,得到 0d 或更多 d 张量零个或多个元素,如下所示:
*备忘录:
import torch
tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([7, 0, 3])
torch.eq(input=tensor1, other=tensor2)
tensor1.eq(other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([false, true, true])
tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4],
[6, 3, 5]])
torch.eq(input=tensor1, other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([[false, true, false],
# [false, false, true]])
torch.eq(input=tensor1, other=3)
# tensor(false)
torch.eq(input=tensor2, other=3)
# tensor([[true, false, false],
# [false, true, false]])
tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[5, 5, 5],
[0, 0, 0],
[3, 3, 3]])
torch.eq(input=tensor1, other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([[true, false, false],
# [false, true, false],
# [false, false, true]])
torch.eq(input=tensor1, other=3)
# tensor([false, false, true])
torch.eq(input=tensor2, other=3)
# tensor([[false, false, false],
# [false, false, false],
# [true, true, true]])
tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[5., 5., 5.],
[0., 0., 0.],
[3., 3., 3.]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[true, false, false],
# [false, true, false],
# [false, false, true]])
torch.eq(input=tensor1, other=3.)
# tensor([false, false, true])
tensor1 = torch.tensor([5.+0.j, 0.+0.j, 3.+0.j])
tensor2 = torch.tensor([[5.+0.j, 5.+0.j, 5.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[3.+0.j, 3.+0.j, 3.+.0j]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[true, false, false],
# [false, true, false],
# [false, false, true]])
torch.eq(input=tensor1, other=3.+0.j)
# tensor([false, false, true])
tensor1 = torch.tensor([true, false, true])
tensor2 = torch.tensor([[true, false, true],
[false, true, false],
[true, false, true]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[true, true, true],
# [false, false, false],
# [true, true, true]])
torch.eq(input=tensor1, other=true)
# tensor([true, false, true])
ne() 可以按元素检查第一个 0d 或更多 d 张量的零个或多个元素是否不等于第二个 0d 或更多 d 张量的零个或多个元素,得到 0d 或更多 d 张量零个或多个元素,如下所示:
*备忘录:
import torch
tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([7, 0, 3])
torch.ne(input=tensor1, other=tensor2)
tensor1.ne(other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([True, False, False])
tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4],
[6, 3, 5]])
torch.ne(input=tensor1, other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([[True, False, True],
# [True, True, False]])
torch.ne(input=tensor1, other=3)
# tensor(True)
torch.ne(input=tensor2, other=3)
# tensor([[False, True, True],
# [True, False, True]])
tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[5, 5, 5],
[0, 0, 0],
[3, 3, 3]])
torch.ne(input=tensor1, other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([[False, True, True],
# [True, False, True],
# [True, True, False]])
torch.ne(input=tensor1, other=3)
# tensor([True, True, False])
torch.ne(input=tensor2, other=3)
# tensor([[True, True, True],
# [True, True, True],
# [False, False, False]])
tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[5., 5., 5.],
[0., 0., 0.],
[3., 3., 3.]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, True, True],
# [True, False, True],
# [True, True, False]])
torch.ne(input=tensor1, other=3.)
# tensor([True, True, False])
tensor1 = torch.tensor([5.+0.j, 0.+0.j, 3.+0.j])
tensor2 = torch.tensor([[5.+0.j, 5.+0.j, 5.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[3.+0.j, 3.+0.j, 3.+.0j]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, True, True],
# [True, False, True],
# [True, True, False]])
torch.ne(input=tensor1, other=3.+0.j)
# tensor([True, True, False])
tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
[False, True, False],
[True, False, True]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, False, False],
# [True, True, True],
# [False, False, False]])
torch.ne(input=tensor1, other=True)
# tensor([False, True, False])
以上就是PyTorch 中的 eq 和 ne的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号