在 PyTorch 中展开

聖光之護
发布: 2024-11-06 11:36:01
转载
863人浏览过

在 pytorch 中展开

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了 unflatten()。
  • 我的帖子解释了 flatten() 和 ravel()。
  • 我的帖子解释了 flatten()。

unflatten() 可以向零个或多个元素的一维或多个 d 张量添加零个或多个维度,得到零个或多个元素的一维或多个 d 张量,如下所示:

*备忘录:

  • 初始化的第一个参数是dim(required-type:int)。
  • 初始化的第二个参数是 unflattened_size(必需类型:元组或 int 列表)。
  • 第一个参数是输入(必需类型:int、float、complex 或 bool 的张量)。 *-1 推断并调整大小。
  • unflatten() 和 unflatten() 的区别是:
    • unflatten() 具有 unflattened_size 参数,该参数与 unflatten() 的 size 参数相同。
    • 基本上,unflatten() 用于定义模型,而 unflatten() 不用于定义模型。
import torch
from torch import nn

unflatten = nn.Unflatten()
unflatten
# Unflatten(dim=0, unflattened_size=(6,))

unflatten.dim
# 0

unflatten.unflattened_size
# (6,)

my_tensor = torch.tensor([7, 1, -8, 3, -6, 0])

unflatten = nn.Unflatten(dim=0, unflattened_size=(6,))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(6,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,))
unflatten(input=my_tensor)
# tensor([7, 1, -8, 3, -6, 0])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 6))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 6))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 6))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 6))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1))
unflatten(input=my_tensor)
# tensor([[7, 1, -8, 3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, -1))
unflatten(input=my_tensor)
# tensor([[7, 1, -8], [3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(3, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(3, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 2))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1))
unflatten(input=my_tensor)
# tensor([[7, 1], [-8, 3], [-6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(6, 1))
unflatten = nn.Unflatten(dim=0, unflattened_size=(6, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, 1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, -1))
unflatten(input=my_tensor)
# tensor([[7], [1], [-8], [3], [-6], [0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 2, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, -1))
unflatten(input=my_tensor)
# tensor([[[7, 1, -8], [3, -6, 0]]])
etc

my_tensor = torch.tensor([[7, 1, -8], [3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=1, unflattened_size=(3,))
unflatten = nn.Unflatten(dim=1, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3,))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(2,))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1,))
unflatten(input=my_tensor)
# tensor([[7, 1, -8], [3, -6, 0]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 2))
unflatten(input=my_tensor)
# tensor([[[7, 1, -8], [3, -6, 0]]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 1))
unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1))
unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 3))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, 1))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, -1))
unflatten(input=my_tensor)
# tensor([[[7, 1, -8]], [[3, -6, 0]]])

unflatten = nn.Unflatten(dim=1, unflattened_size=(3, 1))
unflatten = nn.Unflatten(dim=1, unflattened_size=(3, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1))
unflatten(input=my_tensor)
# tensor([[[7], [1], [-8]], [[3], [-6], [0]]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 2))
unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, -1))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, -1, 2))
unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, -1))
unflatten(input=my_tensor)
# tensor([[[[7, 1, -8], [3, -6, 0]]]])

unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, -1))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3))
unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, -1))
unflatten(input=my_tensor)
# tensor([[[[7, 1, -8]]], [[[3, -6, 0]]]])

my_tensor = torch.tensor([[7., 1., -8.], [3., -6., 0.]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten(input=my_tensor)
# tensor([[7., 1., -8.], [3., -6., 0.]])

my_tensor = torch.tensor([[7.+0.j, 1.+0.j, -8.+0.j],
                          [3.+0.j, -6.+0.j, 0.+0.j]])
unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten(input=my_tensor)
# tensor([[7.+0.j, 1.+0.j, -8.+0.j],
#         [3.+0.j, -6.+0.j, 0.+0.j]])

my_tensor = torch.tensor([[True, False, True], [False, True, False]])

unflatten = nn.Unflatten(dim=0, unflattened_size=(2,))
unflatten(input=my_tensor)
# tensor([[True, False, True], [False, True, False]])
登录后复制

以上就是在 PyTorch 中展开的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
相关标签:
来源:dev.to网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号