
编辑距离可用于欺诈检测系统,将用户输入的数据(例如姓名、地址或电子邮件)与现有数据进行比较,以识别类似但可能具有欺诈性的条目。
这是将此功能集成到 django 项目中的分步指南。
欺诈检测系统可以比较:
使用 django 的信号在注册或更新时检查新用户数据。
集成库来计算 levenshtein 距离或使用如下 python 函数:
from django.db.models import q
from .models import user # assume user is your user model
def levenshtein_distance(a, b):
n, m = len(a), len(b)
if n > m:
a, b = b, a
n, m = m, n
current_row = range(n + 1) # keep current and previous row
for i in range(1, m + 1):
previous_row, current_row = current_row, [i] + [0] * n
for j in range(1, n + 1):
add, delete, change = previous_row[j] + 1, current_row[j - 1] + 1, previous_row[j - 1]
if a[j - 1] != b[i - 1]:
change += 1
current_row[j] = min(add, delete, change)
return current_row[n]
在您的信号或中间件中,将输入的数据与数据库中的数据进行比较,以查找相似的条目。
from django.db.models import q
from .models import user # assume user is your user model
def detect_similar_entries(email, threshold=2):
users = user.objects.filter(~q(email=email)) # exclure l'utilisateur actuel
similar_users = []
for user in users:
distance = levenshtein_distance(email, user.email)
if distance <= threshold:
similar_users.append((user, distance))
return similar_users
在用户注册或更新后使用 post_save 信号运行此检查:
from django.db.models.signals import post_save
from django.dispatch import receiver
from .models import user
from .utils import detect_similar_entries # import your function
@receiver(post_save, sender=user)
def check_for_fraud(sender, instance, **kwargs):
similar_users = detect_similar_entries(instance.email)
if similar_users:
print(f"potential fraud detected for {instance.email}:")
for user, distance in similar_users:
print(f" - similar email: {user.email}, distance: {distance}")
要跟踪可疑的欺诈行为,您可以创建 fraudlog 模型:
from django.db import models
from django.contrib.auth.models import user
class fraudlog(models.model):
suspicious_user = models.foreignkey(user, related_name='suspicious_logs', on_delete=models.cascade)
similar_user = models.foreignkey(user, related_name='similar_logs', on_delete=models.cascade)
distance = models.integerfield()
created_at = models.datetimefield(auto_now_add=true)
在此模板中保存可疑匹配项:
from .models import FraudLog
@receiver(post_save, sender=User)
def check_for_fraud(sender, instance, **kwargs):
similar_users = detect_similar_entries(instance.email)
for user, distance in similar_users:
FraudLog.objects.create(suspicious_user=instance, similar_user=user, distance=distance)
通过这种方法,您已经实现了基于编辑距离的欺诈检测系统。它有助于识别相似的条目,降低创建欺诈帐户或重复数据的风险。该系统是可扩展的,可以进行调整以满足您项目的特定需求。
以上就是在 Django 项目中实现具有 Levenshtein Distance 的欺诈检测系统的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号