在 torch_tensorrt 中设置动态批次大小
在使用 pytorch 模型与 torch-tensorrt 进行推理时,需要指定批次大小。而对于推理场景,批次大小往往是动态变化的,因此需要在将模型转换为 tensorrt 格式时设置动态批次大小。
在 torch_tensorrt 的 compile 函数中,输入参数 inputs 定义了模型推理时的形状范围。要设置动态批次大小,需要指定 min_shape、opt_shape 和 max_shape 三个参数:
例如,要将批次大小设置为 1 到 100 之间的动态大小,可以这样设置:
inputs = [ torch_tensorrt.Input( min_shape=[1, image_channel, image_size, image_size], opt_shape=[1, image_channel, image_size, image_size], max_shape=[100, image_channel, image_size, image_size], # 设置最大批次大小为 100 device=device ) ]
请注意,动态批次大小的范围应根据硬件和显存限制进行权衡,以确保模型能够高效运行。
以上就是如何使用 torch_tensorrt 设置动态批次大小?的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号