
langgraph是专为llm应用程序设计的工作流编排框架。其核心原则是:
想想购物:浏览→添加到购物车→结账→付款。 langgraph 帮助我们有效地管理此类工作流程。
状态就像任务执行中的检查点:
from typing import typeddict, list
class shoppingstate(typeddict):
# current state
current_step: str
# cart items
cart_items: list[str]
# total amount
total_amount: float
# user input
user_input: str
class shoppinggraph(stategraph):
def __init__(self):
super().__init__()
# define states
self.add_node("browse", self.browse_products)
self.add_node("add_to_cart", self.add_to_cart)
self.add_node("checkout", self.checkout)
self.add_node("payment", self.payment)
状态转换定义任务流的“路线图”:
class shoppingcontroller:
def define_transitions(self):
# add transition rules
self.graph.add_edge("browse", "add_to_cart")
self.graph.add_edge("add_to_cart", "browse")
self.graph.add_edge("add_to_cart", "checkout")
self.graph.add_edge("checkout", "payment")
def should_move_to_cart(self, state: shoppingstate) -> bool:
"""determine if we should transition to cart state"""
return "add to cart" in state["user_input"].lower()
为了保证系统的可靠性,我们需要持久化状态信息:
class statemanager:
def __init__(self):
self.redis_client = redis.redis()
def save_state(self, session_id: str, state: dict):
"""save state to redis"""
self.redis_client.set(
f"shopping_state:{session_id}",
json.dumps(state),
ex=3600 # 1 hour expiration
)
def load_state(self, session_id: str) -> dict:
"""load state from redis"""
state_data = self.redis_client.get(f"shopping_state:{session_id}")
return json.loads(state_data) if state_data else none
任何步骤都可能失败,我们需要优雅地处理这些情况:
class errorhandler:
def __init__(self):
self.max_retries = 3
async def with_retry(self, func, state: dict):
"""function execution with retry mechanism"""
retries = 0
while retries < self.max_retries:
try:
return await func(state)
except exception as e:
retries += 1
if retries == self.max_retries:
return self.handle_final_error(e, state)
await self.handle_retry(e, state, retries)
def handle_final_error(self, error, state: dict):
"""handle final error"""
# save error state
state["error"] = str(error)
# rollback to last stable state
return self.rollback_to_last_stable_state(state)
让我们看一个实际的例子——智能客服系统:
from langgraph.graph import stategraph, state
class customerservicestate(typeddict):
conversation_history: list[str]
current_intent: str
user_info: dict
resolved: bool
class customerservicegraph(stategraph):
def __init__(self):
super().__init__()
# initialize states
self.add_node("greeting", self.greet_customer)
self.add_node("understand_intent", self.analyze_intent)
self.add_node("handle_query", self.process_query)
self.add_node("confirm_resolution", self.check_resolution)
async def greet_customer(self, state: state):
"""greet customer"""
response = await self.llm.generate(
prompt=f"""
conversation history: {state['conversation_history']}
task: generate appropriate greeting
requirements:
1. maintain professional friendliness
2. acknowledge returning customers
3. ask how to help
"""
)
state['conversation_history'].append(f"assistant: {response}")
return state
async def analyze_intent(self, state: state):
"""understand user intent"""
response = await self.llm.generate(
prompt=f"""
conversation history: {state['conversation_history']}
task: analyze user intent
output format:
{{
"intent": "refund/inquiry/complaint/other",
"confidence": 0.95,
"details": "specific description"
}}
"""
)
state['current_intent'] = json.loads(response)
return state
# Initialize system
graph = CustomerServiceGraph()
state_manager = StateManager()
error_handler = ErrorHandler()
async def handle_customer_query(user_id: str, message: str):
# Load or create state
state = state_manager.load_state(user_id) or {
"conversation_history": [],
"current_intent": None,
"user_info": {},
"resolved": False
}
# Add user message
state["conversation_history"].append(f"User: {message}")
# Execute state machine flow
try:
result = await graph.run(state)
# Save state
state_manager.save_state(user_id, result)
return result["conversation_history"][-1]
except Exception as e:
return await error_handler.with_retry(
graph.run,
state
)
陈述设计原则
转换逻辑优化
错误处理策略
性能优化
状态爆炸
死锁情况
状态一致性
langgraph 状态机为管理复杂的 ai agent 任务流提供了强大的解决方案:
以上就是LangGraph 状态机:管理生产中的复杂代理任务流的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号