0

0

使用 DQN 构建国际象棋代理

聖光之護

聖光之護

发布时间:2024-12-30 18:30:01

|

1011人浏览过

|

来源于php中文网

原创

我最近尝试用dqn构建一个国际象棋ai代理。

任何了解DQN和国际象棋的人都会告诉你这是个不太现实的想法。 确实如此,但作为一名初学者,我依然乐于尝试。本文将分享我的经验和心得。


环境理解

在实现代理之前,我需要熟悉环境并创建一个自定义包装器,以便在训练过程中与代理交互。

  • 我使用了kaggle_environments库中的国际象棋环境。

    from kaggle_environments import make
    env = make("chess", debug=True)
  • 我还使用了chessnut,一个轻量级的Python库,用于解析和验证国际象棋游戏。

    from chessnut import game
    initial_fen = env.state[0]['observation']['board']
    game = game(env.state[0]['observation']['board'])

环境状态表示

棋盘状态以FEN格式存储。

使用 DQN 构建国际象棋代理

FEN是一种紧凑的棋盘表示方法。但为了神经网络的输入,我需要修改状态表示。


FEN转换为矩阵

使用 DQN 构建国际象棋代理

棋盘上有12种棋子,我创建了12个8x8的通道来表示每种棋子的状态。

maven使用方法 中文WORD版
maven使用方法 中文WORD版

本文档主要讲述的是maven使用方法;Maven是基于项目对象模型的(pom),可以通过一小段描述信息来管理项目的构建,报告和文档的软件项目管理工具。Maven将你的注意力从昨夜基层转移到项目管理层。Maven项目已经能够知道 如何构建和捆绑代码,运行测试,生成文档并宿主项目网页。希望本文档会给有需要的朋友带来帮助;感兴趣的朋友可以过来看看

下载

环境包装器

import random
class EnvCust:
    def __init__(self):
        self.env = make("chess", debug=True)
        self.game = game(self.env.state[0]['observation']['board'])
        self.action_space = list(self.game.get_moves())
        self.obs_space = fen_to_board(self.env.state[0]['observation']['board'])

    def get_action(self):
        return list(self.game.get_moves())

    def get_obs_space(self):
        return fen_to_board(self.env.state[0]['observation']['board'])

    def step(self, action):
        reward = 0
        g = game(self.env.state[0]['observation']['board'])
        if g.board.get_piece(game.xy2i(action[2:4])) == 'q':
            reward = 7
        elif g.board.get_piece(game.xy2i(action[2:4])) in ('n', 'b', 'r'):
            reward = 4
        elif g.board.get_piece(game.xy2i(action[2:4])) == 'p':
            reward = 2
        g.apply_move(action)
        done = False
        if g.status == 2:
            done = True
            reward = 10
        elif g.status == 1:
            done = True
            reward = -5
        self.env.step([action, 'none'])
        self.action_space = self.get_action()
        if not self.action_space:
            done = True
        else:
            self.env.step(['none', random.choice(self.action_space)])
            g = game(self.env.state[0]['observation']['board'])
            if g.status == 2:
                reward = -10
                done = True
        self.action_space = self.get_action()
        return self.env.state[0]['observation']['board'], reward, done

此包装器提供奖励机制和与环境交互的step函数。chessnut帮助获取合法走法和将死信息。奖励策略:将死得分,吃子得分,输棋扣分。


重放缓冲区

使用 DQN 构建国际象棋代理

重放缓冲区存储(状态, 动作, 奖励, 下一状态)元组,用于目标网络的反向传播。


辅助函数

使用 DQN 构建国际象棋代理使用 DQN 构建国际象棋代理

chessnut使用UCI格式(例如"a2a3")表示动作。为了与神经网络交互,我将其转换为索引(64*64)。我知道并非所有索引都对应合法走法,但chessnut可以处理合法性,且这种方法足够简单。


神经网络结构

import torch
import torch.nn as nn
import torch.optim as optim

class DQN(nn.Module):
    def __init__(self):
        super(DQN, self).__init__()
        self.conv_layers = nn.Sequential(
            nn.Conv2d(12, 32, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU()
        )
        self.fc_layers = nn.Sequential(
            nn.Flatten(),
            nn.Linear(64 * 8 * 8, 256),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 4096)
        )

    def forward(self, x):
        x = x.unsqueeze(0)
        x = self.conv_layers(x)
        x = self.fc_layers(x)
        return x

    def predict(self, state, valid_action_indices):
        with torch.no_grad():
            q_values = self.forward(state)
            q_values = q_values.squeeze(0)
            valid_q_values = q_values[valid_action_indices]
            best_action_relative_index = valid_q_values.argmax().item()
            best_action_index = valid_action_indices[best_action_relative_index]
            return valid_q_values[best_action_relative_index], best_action_index

神经网络使用卷积层处理12通道输入,并使用合法动作索引过滤输出。


代理实现

# ... (假设ReplayBuffer, fen_to_board, uci_to_action_index等函数已定义) ...
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DQN().to(device)
target_network = DQN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
replay_buffer = ReplayBuffer(buffer_size=10000)
epsilon = 0.5
gamma = 0.99
batch_size = 15

def train(episodes):
    for ep in range(1, episodes + 1):
        print('Episode Number:', ep)
        myenv = EnvCust()
        done = False
        state = myenv.get_obs_space()
        i = 0
        while not done and i < batch_size:
            # ... (action selection and step logic) ...
            # ... (replay buffer update) ...
            i += 1
        if ep % 5 == 0:
            target_network.load_state_dict(model.state_dict())

这是一个非常基础的模型,效果肯定不好,但这有助于我理解DQN的工作原理。

使用 DQN 构建国际象棋代理

请注意,代码中省略了一些函数的定义(例如ReplayBuffer, fen_to_board, uci_to_action_index, action_index),因为它们比较长,而且本文的重点是架构和思路。 要运行这段代码,需要补充这些函数的实现。 此外,这个模型过于简化,实际应用中需要更复杂的网络结构、训练策略和超参数调整才能获得更好的效果。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

745

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

757

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1260

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

80

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号