PyTorch 中的 fmod

霞舞
发布: 2024-12-31 11:18:14
原创
872人浏览过

pytorch 的 fmod() 函数详解:模运算的利器

本文将详细介绍 PyTorch 中 fmod() 函数的功能、使用方法以及一些需要注意的细节。fmod() 函数用于执行模运算(取余),它可以处理不同形状的张量以及标量,并提供灵活的输出选项。

PyTorch 中的 fmod

功能概述:

fmod() 函数计算两个张量或一个张量和一个标量之间的模运算。其结果是一个新的张量,其中每个元素是输入张量对应元素除以另一个张量或标量后的余数。 与标准的取余运算不同的是,fmod() 保留了余数与被除数相同的符号。

参数:

  • input (Tensor): 输入张量,可以是整数或浮点数类型。这是必选参数。
  • other (Tensor or scalar): 另一个张量或标量,用于计算模运算。如果 other 是标量,则它将与 input 张量的每个元素进行模运算。 这是必选参数。
  • out (Tensor, optional): 可选的输出张量。如果提供,结果将写入此张量。

使用方法及示例:

以下示例展示了 fmod() 函数在不同场景下的使用方法:

import torch

# 整数张量与张量运算
tensor1 = torch.tensor([9, 7, 6])
tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]])

result = torch.fmod(input=tensor1, other=tensor2)  # 使用命名参数
print(result)  # tensor([[1, 3, 0], [1, 2, 1]])

result = tensor1.fmod(other=tensor2)  # 使用方法调用
print(result)  # tensor([[1, 3, 0], [1, 2, 1]])


# 整数张量与标量运算
result = torch.fmod(input=tensor1, other=4)
print(result)  # tensor([1, 3, 2])


# 负数整数张量运算
tensor1 = torch.tensor([-9, -7, -6])
result = torch.fmod(input=tensor1, other=tensor2)
print(result)  # tensor([[-1, -3, 0], [-1, -2, -1]])

result = torch.fmod(input=tensor1, other=4)
print(result)  # tensor([-1, -3, -2])


# 浮点数张量运算
tensor1 = torch.tensor([9.75, 7.08, 6.26])
tensor2 = torch.tensor([[4.26, -4.54, 3.37], [-2.16, 5.43, -5.98]])

result = torch.fmod(input=tensor1, other=tensor2)
print(result)  # tensor([[1.2300, 2.5400, 2.8900], [1.1100, 1.6500, 0.2800]])

result = torch.fmod(input=tensor1, other=4.26)
print(result)  # tensor([1.2300, 2.8200, 2.0000])
登录后复制

重要提示:

  • 将 0 (整数) 作为 other 参数会导致 ZeroDivisionError 错误。
  • out 参数用于指定输出张量,提高效率,但必须使用命名参数 out= 指定。

通过以上介绍和示例,相信您已经对 PyTorch 的 fmod() 函数有了更深入的理解,可以更好地将其应用于您的深度学习项目中。

以上就是PyTorch 中的 fmod的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
相关标签:
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号