请我喝杯咖啡☕
*备忘录:
sub() 可以与零个或多个元素或标量的 0d 或多个 d 张量中的两个或零个或多个元素的 0d 或多个 d 张量与一个标量进行减法,得到为零的 0d 或多个 d 张量或更多元素,如下所示:
*备忘录:
import torch
tensor1 = torch.tensor([9, 7, 6])
tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]])
torch.sub(input=tensor1, other=tensor2)
tensor1.sub(other=tensor2)
torch.sub(input=tensor1, other=tensor2, alpha=1)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(1))
# tensor([[5, 11, 3], [11, 2, 11]])
torch.sub(input=tensor1, other=tensor2, alpha=0)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(0))
# tensor([[9, 7, 6], [9, 7, 6]])
torch.sub(input=tensor1, other=tensor2, alpha=2)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(2))
# tensor([[1, 15, 0], [13, -3, 16]])
torch.sub(input=tensor1, other=tensor2, alpha=-1)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(-1))
# tensor([[13, 3, 9], [7, 12, 1]])
torch.sub(input=tensor1, other=tensor2, alpha=-2)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(-2))
# tensor([[17, -1, 12], [5, 17, -4]])
torch.sub(input=9, other=tensor2)
torch.sub(input=9, other=tensor2, alpha=1)
torch.sub(input=9, other=tensor2, alpha=torch.tensor(1))
# tensor([[5, 13, 6], [11, 4, 14]])
torch.sub(input=tensor1, other=4)
torch.sub(input=tensor1, other=4, alpha=1)
torch.sub(input=tensor1, other=4, alpha=torch.tensor(1))
# tensor([5, 3, 2])
torch.sub(input=9, other=4)
torch.sub(input=9, other=4, alpha=1)
torch.sub(input=9, other=4, alpha=torch.tensor(1))
# tensor(5)
tensor1 = torch.tensor([9., 7., 6.])
tensor2 = torch.tensor([[4., -4., 3.], [-2., 5., -5.]])
torch.sub(input=tensor1, other=tensor2)
torch.sub(input=tensor1, other=tensor2, alpha=1.)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(1.))
# tensor([[5., 11., 3.], [11., 2., 11.]])
torch.sub(input=9., other=tensor2)
torch.sub(input=9., other=tensor2, alpha=1.)
torch.sub(input=9., other=tensor2, alpha=torch.tensor(1.))
# tensor([[5., 13., 6.], [11., 4., 14.]])
torch.sub(input=tensor1, other=4)
torch.sub(input=tensor1, other=4, alpha=1.)
torch.sub(input=tensor1, other=4, alpha=torch.tensor(1.))
# tensor([5., 3., 2.])
torch.sub(input=9., other=4)
torch.sub(input=9., other=4, alpha=1.)
torch.sub(input=9., other=4, alpha=torch.tensor(1.))
# tensor(5.)
tensor1 = torch.tensor([9.+0.j, 7.+0.j, 6.+0.j])
tensor2 = torch.tensor([[4.+0.j, -4.+0.j, 3.+0.j],
[-2.+0.j, 5.+0.j, -5.+0.j]])
torch.sub(input=tensor1, other=tensor2)
torch.sub(input=tensor1, other=tensor2, alpha=1.+0.j)
torch.sub(input=tensor1, other=tensor2, alpha=torch.tensor(1.+0.j))
# tensor([[5.+0.j, 11.+0.j, 3.+0.j],
# [11.+0.j, 2.+0.j, 11.+0.j]])
torch.sub(input=9.+0.j, other=tensor2)
torch.sub(input=9.+0.j, other=tensor2, alpha=1.+0.j)
torch.sub(input=9.+0.j, other=tensor2, alpha=torch.tensor(1.+0.j))
# tensor([[5.+0.j, 13.+0.j, 6.+0.j],
# [11.+0.j, 4.+0.j, 14.+0.j]])
torch.sub(input=tensor1, other=4.+0.j)
torch.sub(input=tensor1, other=4.+0.j, alpha=1.+0.j)
torch.sub(input=tensor1, other=4.+0.j, alpha=torch.tensor(1.+0.j))
# tensor([5.+0.j, 3.+0.j, 2.+0.j])
torch.sub(input=9.+0.j, other=4.+0.j)
torch.sub(input=9.+0.j, other=4.+0.j, alpha=1.+0.j)
torch.sub(input=9.+0.j, other=4.+0.j, alpha=torch.tensor(1.+0.j))
# tensor(5.+0.j)
以上就是PyTorch 中的子项目的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号