给我买咖啡☕
*备忘录:
> fivecrop()可以将图像裁剪成5个部分(左上角,右上,左下,右下和中心),如下所示:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import FiveCrop
fivecrop = FiveCrop(size=100)
fivecrop
# FiveCrop(size=(100, 100))
fivecrop.size
# (100, 100)
origin_data = OxfordIIITPet(
root="data",
transform=None
)
s500_394origin_data = OxfordIIITPet( # `s` is size.
root="data",
transform=FiveCrop(size=[500, 394])
)
s300_data = OxfordIIITPet(
root="data",
transform=FiveCrop(size=300)
)
s200_data = OxfordIIITPet(
root="data",
transform=FiveCrop(size=200)
)
s100_data = OxfordIIITPet(
root="data",
transform=FiveCrop(size=100)
)
s50_data = OxfordIIITPet(
root="data",
transform=FiveCrop(size=50)
)
s10_data = OxfordIIITPet(
root="data",
transform=FiveCrop(size=10)
)
s1_data = OxfordIIITPet(
root="data",
transform=FiveCrop(size=1)
)
s200_300_data = OxfordIIITPet(
root="data",
transform=FiveCrop(size=[200, 300])
)
s300_200_data = OxfordIIITPet(
root="data",
transform=FiveCrop(size=[300, 200])
)
import matplotlib.pyplot as plt
def show_images1(fcims, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
titles = ['Top-left', 'Top-right', 'Bottom-left',
'Bottom-right', 'Center']
for i, fcim in zip(range(1, 6), fcims):
plt.subplot(1, 5, i)
plt.title(label=titles[i-1], fontsize=14)
plt.imshow(X=fcim)
plt.tight_layout()
plt.show()
plt.figure(figsize=(7, 9))
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images1(fcims=s500_394origin_data[0][0], main_title="s500_394origin_data")
show_images1(fcims=s300_data[0][0], main_title="s300_data")
show_images1(fcims=s200_data[0][0], main_title="s200_data")
show_images1(fcims=s100_data[0][0], main_title="s100_data")
show_images1(fcims=s50_data[0][0], main_title="s50_data")
show_images1(fcims=s10_data[0][0], main_title="s10_data")
show_images1(fcims=s1_data[0][0], main_title="s1_data")
show_images1(fcims=s200_300_data[0][0], main_title="s200_300_data")
show_images1(fcims=s300_200_data[0][0], main_title="s300_200_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(im, main_title=None, s=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
titles = ['Top-left', 'Top-right', 'Bottom-left',
'Bottom-right', 'Center']
if not s:
s = [im.size[1], im.size[0]]
fc = FiveCrop(size=s) # Here
for i, fcim in zip(range(1, 6), fc(im)):
plt.subplot(1, 5, i)
plt.title(label=titles[i-1], fontsize=14)
plt.imshow(X=fcim) # Here
plt.tight_layout()
plt.show()
plt.figure(figsize=(7, 9))
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images2(im=origin_data[0][0], main_title="s500_394origin_data")
# show_images2(im=origin_data[0][0], main_title="s500_394origin_data",
# s=[500, 394])
show_images2(im=origin_data[0][0], main_title="s300_data", s=300)
show_images2(im=origin_data[0][0], main_title="s200_data", s=200)
show_images2(im=origin_data[0][0], main_title="s100_data", s=100)
show_images2(im=origin_data[0][0], main_title="s50_data", s=50)
show_images2(im=origin_data[0][0], main_title="s10_data", s=10)
show_images2(im=origin_data[0][0], main_title="s1_data", s=1)
show_images2(im=origin_data[0][0], main_title="s200_300_data", s=[200, 300])
show_images2(im=origin_data[0][0], main_title="s300_200_data", s=[300, 200])









以上就是Pytorch中的Fivecrop的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号