Pytorch中的Randomhorizo​​ntalflip

霞舞
发布: 2025-02-08 09:06:10
转载
277人浏览过

给我买咖啡☕

*备忘录:

  • 我的帖子解释了bersanverticalflip()。
  • >
  • 我的帖子解释了牛津iiitpet()。

randomhorizo​​ntalflip()可以随机和水平覆盖图像,如下所示:

*备忘录:

  • 初始化的第一个参数是p(可选默认:0.5-type:int或float): *备忘录:
    • 这是图像是否被翻转的可能性。
    • >
    • 必须为0
  • 第一个参数是img(必需类型:pil图像或张量(int)): *备忘录:
    • 张量必须为2d或3d。
    • 不使用img =。
    建议根据v1或v2使用v2?我应该使用哪一个?
  • from torchvision.datasets import OxfordIIITPet
    from torchvision.transforms.v2 import RandomHorizontalFlip
    
    randomhorizontalflip = RandomHorizontalFlip()
    randomhorizontalflip = RandomHorizontalFlip(p=0.5)
    
    randomhorizontalflip
    # RandomHorizontalFlip(p=0.5)
    
    randomhorizontalflip.p
    # 0.5
    
    origin_data = OxfordIIITPet(
        root="data",
        transform=None
        # transform=RandomHorizontalFlip(p=0)
    )
    
    p1_data = OxfordIIITPet(
        root="data",
        transform=RandomHorizontalFlip(p=1)
    )
    
    p05_data = OxfordIIITPet(
        root="data",
        transform=RandomHorizontalFlip(p=0.5)
    )
    
    import matplotlib.pyplot as plt
    
    def show_images1(data, main_title=None):
        plt.figure(figsize=[10, 5])
        plt.suptitle(t=main_title, y=0.8, fontsize=14)
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
        plt.tight_layout()
        plt.show()
    
    show_images1(data=origin_data, main_title="origin_data")
    print()
    show_images1(data=p1_data, main_title="p1_data")
    show_images1(data=p1_data, main_title="p1_data")
    show_images1(data=p1_data, main_title="p1_data")
    print()
    show_images1(data=p05_data, main_title="p05_data")
    show_images1(data=p05_data, main_title="p05_data")
    show_images1(data=p05_data, main_title="p05_data")
    
    # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
    def show_images2(data, main_title=None, prob=0):
        plt.figure(figsize=[10, 5])
        plt.suptitle(t=main_title, y=0.8, fontsize=14)
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            rhf = RandomHorizontalFlip(p=prob)
            plt.imshow(X=rhf(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
        plt.tight_layout()
        plt.show()
    
    show_images2(data=origin_data, main_title="origin_data")
    print()
    show_images2(data=origin_data, main_title="p1_data", prob=1)
    show_images2(data=origin_data, main_title="p1_data", prob=1)
    show_images2(data=origin_data, main_title="p1_data", prob=1)
    print()
    show_images2(data=origin_data, main_title="p05_data", prob=0.5)
    show_images2(data=origin_data, main_title="p05_data", prob=0.5)
    show_images2(data=origin_data, main_title="p05_data", prob=0.5)
    
    登录后复制

image description


image description

image description

image description


image description

image description

image description

以上就是Pytorch中的Randomhorizo​​ntalflip的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
相关标签:
来源:dev.to网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号