给我买咖啡☕
*备忘录:
*备忘录:
>初始化的第一个参数是大小(必需类型:int或tuple/list/list(int)或size()): *备忘录:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomCrop
randomcrop = RandomCrop(size=100)
randomcrop = RandomCrop(size=100,
padding=None,
pad_if_needed=False,
fill=0,
padding_mode='constant')
randomcrop
# RandomCrop(size=(100, 100),
# pad_if_needed=False,
# fill=0,
# padding_mode=constant)
randomcrop.size
# (100, 100)
print(randomcrop.padding)
# None
randomcrop.pad_if_needed
# False
randomcrop.fill
# 0
randomcrop.padding_mode
# 'constant'
origin_data = OxfordIIITPet(
root="data",
transform=None
)
s300_data = OxfordIIITPet( # `s` is size.
root="data",
transform=RandomCrop(size=300)
# transform=RandomCrop(size=[300, 300])
)
s200_data = OxfordIIITPet(
root="data",
transform=RandomCrop(size=200)
)
s100_data = OxfordIIITPet(
root="data",
transform=RandomCrop(size=100)
)
s50_data = OxfordIIITPet(
root="data",
transform=RandomCrop(size=50)
)
s10_data = OxfordIIITPet(
root="data",
transform=RandomCrop(size=10)
)
s1_data = OxfordIIITPet(
root="data",
transform=RandomCrop(size=1)
)
s200_300_data = OxfordIIITPet(
root="data",
transform=RandomCrop(size=[200, 300])
)
s300_200_data = OxfordIIITPet(
root="data",
transform=RandomCrop(size=[300, 200])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i in range(1, 6):
plt.subplot(1, 5, i)
plt.imshow(X=data[0][0])
plt.tight_layout()
plt.show()
plt.figure(figsize=[7, 9])
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images1(data=origin_data, main_title="s500_394origin_data")
show_images1(data=s300_data, main_title="s300_data")
show_images1(data=s200_data, main_title="s200_data")
show_images1(data=s100_data, main_title="s100_data")
show_images1(data=s50_data, main_title="s50_data")
show_images1(data=s10_data, main_title="s10_data")
show_images1(data=s1_data, main_title="s1_data")
show_images1(data=s200_300_data, main_title="s200_300_data")
show_images1(data=s300_200_data, main_title="s300_200_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=None, p=None,
pin=False, f=0, pm='constant'):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
temp_s = s
im = data[0][0]
for i in range(1, 6):
plt.subplot(1, 5, i)
if not temp_s:
s = [im.size[1], im.size[0]]
rc = RandomCrop(size=s, padding=p, # Here
pad_if_needed=pin, fill=f, padding_mode=pm)
plt.imshow(X=rc(im)) # Here
plt.tight_layout()
plt.show()
plt.figure(figsize=[7, 9])
plt.title(label="s500_394origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images2(data=origin_data, main_title="s500_394origin_data")
show_images2(data=origin_data, main_title="s300_data", s=300)
show_images2(data=origin_data, main_title="s200_data", s=200)
show_images2(data=origin_data, main_title="s100_data", s=100)
show_images2(data=origin_data, main_title="s50_data", s=50)
show_images2(data=origin_data, main_title="s10_data", s=10)
show_images2(data=origin_data, main_title="s1_data", s=1)
show_images2(data=origin_data, main_title="s200_300_data", s=[200, 300])
show_images2(data=origin_data, main_title="s300_200_data", s=[300, 200])







以上就是pytorch中的随机克罗普(1)的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号