总结
豆包 AI 助手文章总结

pytorch中的随机溶剂(1)

聖光之護
发布: 2025-02-10 08:04:01
原创
226人浏览过

this text discusses the randomresizedcrop function from the torchvision.transforms.v2 library in python, demonstrating its use with the oxford iiit pet dataset. the code shows how to apply the transformation with various size parameters, including single integers and lists/tuples specifying height and width. the results are visualized using matplotlib.

The key points highlighted are:

  • RandomResizedCrop Functionality: This function randomly crops a portion of an image and resizes it to the specified dimensions.
  • Parameter Usage: The code illustrates how to use the size, scale, ratio, interpolation, and antialias parameters. It demonstrates flexibility in inputting the size parameter (single integer, list, or tuple).
  • Oxford IIIT Pet Dataset: The dataset is used to showcase the transformation's effect on real-world images.
  • Visualization: Matplotlib is used to display the original images and the transformed images for comparison, clearly showing the cropping and resizing effects at different scales.
  • Version Comparison (Implicit): While not explicitly stated, the code implicitly compares the functionality of torchvision.transforms.v2 (used in the example) with the previous version (torchvision.transforms.functional), as the v2 version is explicitly used.

The included images show the original images and the results of applying RandomResizedCrop with different size parameters. The images visually demonstrate the impact of changing the target size on the resulting cropped and resized images. The repetition of some images in the provided text is likely unintentional.

The question regarding v1 vs. v2 is answered implicitly: the code uses v2, implying it's the recommended version. The code's clarity and comments make it easy to understand the functionality and parameter usage of RandomResizedCrop.

The images are reproduced below. Note that the image URLs are placeholders, as they are not accessible to me. To display them correctly, replace these placeholders with the actual image URLs.

pytorch中的随机溶剂(1)

pytorch中的随机溶剂(1)

pytorch中的随机溶剂(1)

pytorch中的随机溶剂(1)

pytorch中的随机溶剂(1)

pytorch中的随机溶剂(1)

pytorch中的随机溶剂(1)


pytorch中的随机溶剂(1)

pytorch中的随机溶剂(1)

pytorch中的随机溶剂(1)

Please replace /uploads/20250210/... with the actual image URLs.

以上就是pytorch中的随机溶剂(1)的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
豆包 AI 助手文章总结
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号