使用OpenAi的食品识别和营养估算

霞舞
发布: 2025-02-11 08:50:01
转载
795人浏览过

这是您可以在短短20分钟内使用openai构建简单的食物识别和营养估算应用程序的方法 它的工作原理

>图像编码:图像被转换为​​base64格式,以通过openai的api处理。

>食物识别提示:该应用将图像发送到openai,以识别食物及其各自的数量。

营养估计:使用另一个提示来估计基于确定的食品及其数量的营养价值。

> 显示结果:使用gradio显示出估计的卡路里,蛋白质,脂肪和碳水化合物的值。

>

这是一个非常简单的代码,可以改进/更好地组织起来,但是想法是说明它可以轻松地创建一个简单的poc。 如果您正在从事有趣的项目,请在

上与我联系

from openai import OpenAI
from pydantic import BaseModel
import base64
from typing import List
import gradio as gr

def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

openai_api_key = "key"
client = OpenAI(api_key=openai_api_key)

"""pydantic models to record food items and nutrient information, 
not necessary but helpful if you intend to create apis 
or use the data in other ways.
"""
class Food(BaseModel):
    name: str
    quantity: str

class Items(BaseModel):
    items: List[Food]

class Nutrient(BaseModel):
    steps: List[str]
    reasons: str
    kcal: str
    fat: str
    proteins: str
    carbohydrates: str


def recognize_items(image):
    """This function takes an image and returns a list of recognized food items along with their count and the nutrition. 
    """
    #first recognize items and quantities
    messages = [
        {
        "role": "user",
        "content": [
            {
            "type": "text",
            "text": f"You are an expert in recognising individual food items and their quantity. Give count(number) for countable items and an estimate for liquid/mixed or non countable items.  For example if you have one burger,two pastries, 2 pav, bhaji and dal in an image, you return burger,pastry,pav, bhaji and dal along with the count or estimates without any duplicates. For non countable items give an estimate in grams while explaining like 'looks 1 teaspoon of sauce, so around 5-8 grams' or 'looks 1 serving of bhaji, so around 150-200gms'. Given the image below, recognise food items with their quantity.",
            }
        ],
        }
    ]

    base64_image = encode_image(image)
    dic = {
                "type": "image_url",
                "image_url": {
                    "url":  f"data:image/jpeg;base64,{base64_image}",
                    "detail": "low"
                },
            }
    messages[0]["content"].append(dic)
    response = client.beta.chat.completions.parse(
    model="gpt-4o-mini",
    messages=messages,
    response_format=Items,
    max_tokens=300,
    temperature=0.1
    )
    foods = response.choices[0].message.parsed

    res = ""
    for food in foods.items:
        res=res+food.name+ " "+food.quantity+"\n"

    #now estimate nutrition, we can use a separate model for this task
    messages = [
        {
        "role": "user",
        "content": [
            {
            "type": "text",
            "text": f"You are an expert in estimating information regarding nutririon given the food items and thier quantities. Think step by step considering the given food items and their quantities, and give an estimated range(lowest - highest) of kcal, range(lowest - highest) of fat, range of proteins(lowest - highest) and carbohydrates(lowest - highest). Ignore contributions from minor items. Ensure your estimations are solely based on the provided quantities.  Return steps,reasons and estimations if this food was consumed. \n\nfood and quantity consumed by user: {res} \n\n.",
            }
        ],
        }
    ]
    dic = {
                "type": "image_url",
                "image_url": {
                    "url":  f"data:image/jpeg;base64,{base64_image}",
                    "detail": "low"
                },
            }
    messages[0]["content"].append(dic)
    response = client.beta.chat.completions.parse(
    model="gpt-4o-mini",
    messages=messages,
    response_format=Nutrient,
    max_tokens=500,
    temperature=0.1
    )
    nuts = response.choices[0].message.parsed
    steps = " ".join(nuts.steps)
    res=res+"\n"+steps+"\n\ncalories: "+nuts.kcal+" \nfats: "+nuts.fat+" \nproteins: "+nuts.proteins+" \ncarbohydrates: "+nuts.carbohydrates+"\n"+nuts.reasons+"\n"+"*These are estimations based on image. They might not be perfect or accurate. Please calculate based on the food you consume for a more precise estimate."
    return res


with gr.Blocks() as demo:
    foods=None
    with gr.Row():
        image_input = gr.Image(label="Upload Image",height=300,width=300,type="filepath")

    with gr.Row() as but_row:
        submit_btn = gr.Button("Detect food and quantity")

    with gr.Row() as text_responses_row: 
        text_response_1 = gr.Textbox(label="Detected food and quantity",scale=1)

    submit_btn.click(
        recognize_items,
        inputs=[image_input],
        outputs=[text_response_1]
    )

if __name__ == "__main__":
    demo.launch() 
登录后复制

以上就是使用OpenAi的食品识别和营养估算的详细内容,更多请关注php中文网其它相关文章!

相关标签:
ai
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:dev.to网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
热门推荐
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号