MongDB的MapReduce相当于MySQL中的group by,所以在MongoDB上使用Map/Reduce进行并行统计很容易。 使用MapReduce要实现两个函数Map函数和Reduce函数,Map函数调用emit(key,value),遍历collection中的所有记录,将key和value传递给Reduce函数进行处理。Map函
mongdb的mapreduce相当于mysql中的“group by”,所以在mongodb上使用map/reduce进行并行“统计”很容易。
使用MapReduce要实现两个函数Map函数和Reduce函数,Map函数调用emit(key,value),遍历collection中的所有记录,将key和value传递给Reduce函数进行处理。Map函数和Reduce函数可以使用JS来实现,可以通过db.runCommand或mapReduce命令来执行一个MapReduce操作。
示例shell
db.runCommand(
{ mapreduce : <collection>,
map : <mapfunction>,
reduce : <reducefunction>
[, query : <query filter object>]
[, sort : <sorts the input objects using this key. Useful for optimization, like sorting by the
emit key for fewer reduces>]
[, limit : <number of objects to return from collection>]
[, out : <see output options below>]
[, keeptemp: <true|false>]
[, finalize : <finalizefunction>]
[, scope : <object where fields go into javascript global scope >]
[, verbose : true]
}
);
下面我们准备数据以备后面示例所需
> db.students.insert({classid:1, age:14, name:'Tom'})
> db.students.insert({classid:1, age:12, name:'Jacky'})
> db.students.insert({classid:2, age:16, name:'Lily'})
> db.students.insert({classid:2, age:9, name:'Tony'})
> db.students.insert({classid:2, age:19, name:'Harry'})
> db.students.insert({classid:2, age:13, name:'Vincent'})
> db.students.insert({classid:1, age:14, name:'Bill'})
> db.students.insert({classid:2, age:17, name:'Bruce'})
>Map 函数必须调用 emit(key, value) 返回键值对,使用 this 访问当前待处理的 Document。
这里this一定不能忘了!!!
> m = function() { emit(this.classid, 1) }
function () {
emit(this.classid, 1);
}
>
> r = function(key, values) {
... var x = 0;
... values.forEach(function(v) { x += v });
... return x;
... }
function (key, values) {
var x = 0;
values.forEach(function (v) {x += v;});
return x;
}
>结果如下:
> res = db.runCommand({
... mapreduce:"students",
... map:m,
... reduce:r,
... out:"students_res"
... });
{
"result" : "students_res",
"timeMillis" : 1587,
"counts" : {
"input" : 8,
"emit" : 8,
"output" : 2
},
"ok" : 1
}
> db.students_res.find()
{ "_id" : 1, "value" : 3 }
{ "_id" : 2, "value" : 5 }
>利用 finalize() 我们可以对 reduce() 的结果做进一步处理。
> f = function(key, value) { return {classid:key, count:value}; }
function (key, value) {
return {classid:key, count:value};
}
>
> res = db.runCommand({
... mapreduce:"students",
... map:m,
... reduce:r,
... out:"students_res",
... finalize:f
... });
{
"result" : "students_res",
"timeMillis" : 804,
"counts" : {
"input" : 8,
"emit" : 8,
"output" : 2
},
"ok" : 1
}
> db.students_res.find()
{ "_id" : 1, "value" : { "classid" : 1, "count" : 3 } }
{ "_id" : 2, "value" : { "classid" : 2, "count" : 5 } }
>我们还可以添加更多的控制细节。
> res = db.runCommand({
... mapreduce:"students",
... map:m,
... reduce:r,
... out:"students_res",
... finalize:f,
... query:{age:{$lt:10}}
... });
{
"result" : "students_res",
"timeMillis" : 358,
"counts" : {
"input" : 1,
"emit" : 1,
"output" : 1
},
"ok" : 1
}
> db.students_res.find();
{ "_id" : 2, "value" : { "classid" : 2, "count" : 1 } }
>
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号