Python中如何处理缺失值?pandas数据清洗技巧

蓮花仙者
发布: 2025-07-11 12:12:02
原创
957人浏览过

处理缺失值的方法包括检查、删除、填充和标记。1. 使用isna()或isnull()检查缺失值,通过sum()统计每列缺失数量,或用any().any()判断整体是否存在缺失;2. 采用dropna()删除缺失比例高的行或列,subset参数指定检查范围,inplace=true直接修改原数据;3. 用fillna()填充缺失值,数值型可用均值、中位数,类别型用众数,时间序列可用前后值填充;4. 对于缺失本身含信息的情况,可新增列标记是否缺失,并将缺失作为特征使用,提升模型表现。

Python中如何处理缺失值?pandas数据清洗技巧

处理缺失值是数据分析中非常基础但也非常关键的一步,特别是在使用pandas进行数据清洗时。很多时候,原始数据中都会存在空值、NaN或者无效值,如果不做处理,会影响后续分析甚至导致错误结果。好在pandas提供了很多实用的方法,可以灵活应对这些情况。

Python中如何处理缺失值?pandas数据清洗技巧

1. 检查缺失值

在动手处理之前,首先要知道数据中哪些地方有缺失值。pandas提供了一个非常方便的函数:isna() 或者 isnull(),它可以标记出数据中的缺失值。

Python中如何处理缺失值?pandas数据清洗技巧
import pandas as pd

df = pd.read_csv('data.csv')
print(df.isna().sum())
登录后复制

这段代码会输出每一列中有多少个缺失值,帮助你快速定位问题所在。

立即学习Python免费学习笔记(深入)”;

如果你只想看看整个DataFrame有没有缺失值,可以用:

Python中如何处理缺失值?pandas数据清洗技巧
df.isna().any().any()
登录后复制

这样就能知道是否需要进一步处理了。

2. 删除缺失值

如果某列或某行的缺失值比例非常高,比如超过70%,通常可以选择直接删除这部分数据。pandas中使用dropna()方法来实现这个操作。

df.dropna(subset=['列名'], inplace=True)
登录后复制

上面这行代码的意思是,在指定列中如果有缺失值,就删除对应的整行数据。如果不指定subset参数,默认会检查所有列。

小贴士: 使用inplace=True可以直接修改原数据,而不是返回一个新对象。如果你不确定后果,建议先复制一份数据再操作。

不过要注意,这种方法虽然简单粗暴,但可能会损失大量有效信息,特别是当数据量本身就不大的时候。

3. 填充缺失值

相比直接删除,填充缺失值是一种更温和的做法,常见的方式包括用均值、中位数、众数或者前后值来填充。

  • 数值型数据常用平均值或中位数:
df['列名'].fillna(df['列名'].mean(), inplace=True)
登录后复制
  • 类别型数据更适合用众数(也就是出现次数最多的值):
df['列名'].fillna(df['列名'].mode()[0], inplace=True)
登录后复制
  • 如果是时间序列数据,可以用前一个或后一个非空值来填充:
df['列名'].fillna(method='ffill', inplace=True)  # 前向填充
登录后复制

这些方法可以根据数据类型和上下文灵活选择,有时候也可以组合使用。

4. 标记缺失值

有些时候,缺失本身也是一种信息。比如在用户填写问卷时,某些字段没填,可能意味着用户对该项不感兴趣或不了解。

这时候可以在填充的同时新增一列,用来标记该字段是否曾经缺失:

df['列名缺失'] = df['列名'].isna().astype(int)
df['列名'].fillna(0, inplace=True)
登录后复制

这样不仅保留了原始数据结构,还把“缺失”作为一个特征加入了模型训练中,有时反而能提升模型表现。


基本上就这些。处理缺失值看起来不复杂,但在实际项目中很容易被忽略细节,比如填充方式不合适、误删重要数据等。只要根据具体场景灵活选用合适的方法,就可以避免这些问题。

以上就是Python中如何处理缺失值?pandas数据清洗技巧的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号