0

0

Pandas MultiIndex DataFrame 高效批量添加多行数据

DDD

DDD

发布时间:2025-07-11 21:02:01

|

960人浏览过

|

来源于php中文网

原创

pandas multiindex dataframe 高效批量添加多行数据

本文旨在探讨如何在Pandas MultiIndex DataFrame中高效地批量添加多行数据,尤其是在涉及新增索引层级时。传统的循环迭代添加方法会导致性能瓶颈,因为它会频繁创建DataFrame副本。通过构建一个带有正确MultiIndex的新DataFrame,并利用pd.concat()进行合并,可以显著提升数据添加的效率和性能,避免不必要的内存开销。

在数据分析和科学计算中,Pandas DataFrame以其强大的数据处理能力成为不可或缺的工具。特别是当数据具有多层分类结构时,MultiIndex DataFrame能够提供清晰、灵活的数据组织方式。然而,当我们需要向一个已有的MultiIndex DataFrame中添加大量新行,尤其是这些新行涉及到MultiIndex中新的高层级(例如新的主题、新的试验)时,效率问题便浮出水面。

低效的循环添加方法及其弊端

考虑一个实验场景,我们收集了不同受试者(subject)、不同试验(trial)下,每个试验中不同事件(event)的数据,并使用MultiIndex DataFrame进行存储:

import pandas as pd

# 初始数据
tuples = [
    ('s1', 't1', 0, 1, 11), ('s1', 't2', 0, 4, 14), ('s1', 't2', 1, 5, 15), ('s2', 't1', 0, 6, 16),
    ('s2', 't1', 1, 7, 17), ('s2', 't2', 0, 8, 18), ('s2', 't3', 0, 9, 19),
]
df = pd.DataFrame.from_records(tuples, index=['subject', 'trial', 'event'],
                              columns=['subject', 'trial', 'event', 'A', 'B'])
print("原始DataFrame:")
print(df)

输出如下:

                     A   B
subject trial event       
s1      t1    0      1  11
        t2    0      4  14
              1      5  15
s2      t1    0      6  16
              1      7  17
        t2    0      8  18
        t3    0      9  19

现在,假设我们要为新的受试者 's3'、新的试验 't1' 添加一系列新的事件数据,例如 events = [5, 6, 7]。一种直观但效率低下的做法是使用循环和 df.loc 进行逐行添加:

events = [5, 6, 7] # 待添加的事件数据列表
for i, event_val in enumerate(events):
    df.loc[('s3', 't1', i), 'A'] = event_val
print("\n使用循环添加后的DataFrame:")
print(df)

其输出为:

                       A     B
subject trial event           
s1      t1    0      1.0  11.0
        t2    0      4.0  14.0
              1      5.0  15.0
s2      t1    0      6.0  16.0
              1      7.0  17.0
        t2    0      8.0  18.0
        t3    0      9.0  19.0
s3      t1    0      5.0   NaN
              1      6.0   NaN
              2      7.0   NaN

这种方法虽然实现了功能,但在内部,每次循环迭代都可能导致Pandas重新分配内存并复制整个DataFrame,这对于大量数据或频繁操作而言,会产生巨大的性能开销。尤其当添加的索引层级(如 's3')是全新的,Pandas需要扩展其内部结构来容纳新数据,这使得复制操作更为频繁和昂贵。

尝试直接使用 df.loc 批量赋值给新的MultiIndex组合,通常会遇到 KeyError 或 ValueError,因为Pandas期望现有索引或能够直接匹配的索引结构,而不是凭空创建新的MultiIndex组合。例如:

网趣网上购物系统HTML静态版
网趣网上购物系统HTML静态版

网趣购物系统静态版支持网站一键静态生成,采用动态进度条模式生成静态,生成过程更加清晰明确,商品管理上增加淘宝数据包导入功能,与淘宝数据同步更新!采用领先的AJAX+XML相融技术,速度更快更高效!系统进行了大量的实用性更新,如优化核心算法、增加商品图片批量上传、谷歌地图浏览插入等,静态版独特的生成算法技术使静态生成过程可随意掌控,从而可以大大减轻服务器的负担,结合多种强大的SEO优化方式于一体,使

下载
# 常见失败尝试示例
# df.loc[('s3','t2'), 'A'] = events    # --> KeyError
# df.loc[('s3','t2', slice(None)), 'A'] = events    # --> ValueError

这些错误表明,df.loc 主要用于对现有数据进行选择和修改,或在现有索引下添加数据,而非高效地创建新的、多层级的索引结构并批量插入数据。

高效的批量添加策略:构建新DataFrame并合并

解决上述效率问题的关键在于利用Pandas的向量化操作能力。最佳实践是:

  1. 将所有待添加的新数据组织成一个新的DataFrame。
  2. 确保这个新DataFrame具有与目标DataFrame兼容的MultiIndex结构。
  3. 使用 pd.concat() 函数将新旧DataFrame合并。

下面是具体实现步骤:

# 待添加的新事件数据
events_new = [5, 6, 7]
num_of_events_new = len(events_new)

# 1. 构建新数据的MultiIndex
# MultiIndex的每个层级都需要一个与数据长度相等的列表
# 这里为's3'、't1'、以及事件序号0, 1, 2
new_subject_level = ['s3'] * num_of_events_new
new_trial_level = ['t1'] * num_of_events_new
new_event_level = range(num_of_events_new) # 0, 1, 2

# 使用pd.MultiIndex.from_arrays()创建MultiIndex
idx_new = pd.MultiIndex.from_arrays([new_subject_level, new_trial_level, new_event_level],
                                     names=['subject', 'trial', 'event'])

# 2. 创建包含新数据的新DataFrame
# 将events_new列表作为数据,使用上面构建的MultiIndex
# 注意,我们只添加了'A'列的数据,'B'列将自动填充NaN
df_to_add = pd.DataFrame(events_new, index=idx_new, columns=['A'])

print("\n待添加的新DataFrame:")
print(df_to_add)

# 3. 使用pd.concat()合并原始DataFrame和新DataFrame
# ignore_index=False (默认) 会保留原始索引
# axis=0 (默认) 会按行合并
df_combined = pd.concat([df, df_to_add])

print("\n高效添加后的DataFrame:")
print(df_combined)

输出结果:

待添加的新DataFrame:
                     A
subject trial event   
s3      t1    0      5
              1      6
              2      7

高效添加后的DataFrame:
                       A     B
subject trial event           
s1      t1    0      1.0  11.0
        t2    0      4.0  14.0
              1      5.0  15.0
s2      t1    0      6.0  16.0
              1      7.0  17.0
        t2    0      8.0  18.0
        t3    0      9.0  19.0
s3      t1    0      5.0   NaN
              1      6.0   NaN
              2      7.0   NaN

注意事项与最佳实践

  1. 索引层级匹配: 新构建的DataFrame的MultiIndex的层级名称(names 参数)应与原始DataFrame的MultiIndex层级名称保持一致,以确保 pd.concat() 能够正确对齐。
  2. 数据对齐: 如果新DataFrame的列与原始DataFrame的列不完全匹配,pd.concat() 会自动填充 NaN 值。这通常是期望的行为,但需要注意数据的完整性。
  3. 向量化优势: 这种方法充分利用了Pandas底层的C语言优化,避免了Python循环带来的开销,尤其适用于大规模数据操作。
  4. 内存管理: 虽然 pd.concat() 仍可能涉及数据复制,但它通常比反复修改原DataFrame的内存效率更高,因为它是一次性操作,而非多次小规模的重新分配。
  5. 适用场景: 这种策略特别适合于一次性添加一个“块”的数据,即新增的数据属于MultiIndex中的一个或多个新的高层级组合。

总结

当需要在Pandas MultiIndex DataFrame中高效批量添加多行数据,尤其是涉及到新增索引层级时,避免使用循环逐行添加。正确的做法是,首先构造一个带有正确MultiIndex结构的新DataFrame来承载所有待添加的数据,然后利用 pd.concat() 函数将其与原始DataFrame进行合并。这种方法不仅能够确保数据的正确对齐,更能显著提升操作效率和性能,是处理此类数据添加任务的推荐实践。掌握这一技巧,将有助于更高效地管理和操作复杂的结构化数据。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

753

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

636

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

618

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1262

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

707

2023.08.11

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

1

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.7万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号