0

0

Python多进程怎么用?提升计算性能的方法

雪夜

雪夜

发布时间:2025-07-17 18:13:02

|

235人浏览过

|

来源于php中文网

原创

python多进程通过独立进程绕过gil实现真正并行,适用于cpu密集型任务。1. multiprocessing模块提供process类管理独立任务;2. pool类用于批量任务并行处理;3. 多进程避免gil限制,每个进程有独立解释器和内存空间;4. i/o密集型任务更适合用异步或多线程;5. 进程间通信可用queue、pipe、共享内存配合锁机制实现同步;6. manager用于共享复杂数据结构但性能略低;7. 多进程启动开销大,不适合轻量或频繁创建的任务。合理选择并发模型并注意数据同步可提升程序效率。

Python多进程怎么用?提升计算性能的方法

Python多进程的核心在于利用多核CPU的优势,让程序的不同部分真正地并行运行,从而显著提升计算密集型任务的执行效率。它通过创建独立的进程来规避Python全局解释器锁(GIL)的限制,让每个进程拥有自己的解释器和内存空间,实现真正的并行计算。

Python多进程怎么用?提升计算性能的方法

解决方案

在Python中,实现多进程主要依赖于内置的multiprocessing模块。这个模块提供了多种创建和管理进程的方式,最常用的是Process类和Pool类。

使用Process类管理独立任务: 当你需要并行执行几个独立的、不共享太多状态的任务时,Process类是一个直接的选择。

Python多进程怎么用?提升计算性能的方法
import multiprocessing
import time
import os

def task_worker(name, delay):
    """一个模拟耗时任务的函数"""
    pid = os.getpid()
    print(f"进程 {pid} ({name}) 开始执行...")
    time.sleep(delay)
    print(f"进程 {pid} ({name}) 执行完毕。")

if __name__ == "__main__":
    print("主进程开始。")
    # 创建并启动两个独立的进程
    p1 = multiprocessing.Process(target=task_worker, args=("任务A", 3))
    p2 = multiprocessing.Process(target=task_worker, args=("任务B", 2))

    p1.start() # 启动进程A
    p2.start() # 启动进程B

    # 等待所有子进程完成
    p1.join()
    p2.join()

    print("所有子进程均已完成,主进程退出。")

这段代码展示了如何创建两个独立的进程,它们并行执行各自的任务。start()方法启动进程,join()方法则阻塞主进程,直到对应的子进程执行完毕。

立即学习Python免费学习笔记(深入)”;

使用Pool类处理并行化任务集合: 当你有大量相似的任务需要并行处理,并且这些任务可以分解成独立的子任务时,Pool类会更方便。它会创建一个工作进程池,自动管理任务的分配和结果的收集。这对于数据并行处理非常有用。

Python多进程怎么用?提升计算性能的方法
import multiprocessing
import time
import os

def heavy_computation(number):
    """一个模拟CPU密集型计算的函数"""
    pid = os.getpid()
    # print(f"进程 {pid} 正在计算 {number} 的平方...")
    time.sleep(0.1) # 模拟计算耗时
    return number * number

if __name__ == "__main__":
    print("主进程开始,使用进程池。")
    # 创建一个进程池,通常设置为CPU核心数
    # 如果不指定processes参数,默认是os.cpu_count()
    with multiprocessing.Pool(processes=4) as pool:
        # 使用map方法将任务分配给进程池中的工人进程
        # map会阻塞直到所有结果都返回,并保持输入顺序
        numbers = range(10)
        results = pool.map(heavy_computation, numbers)

        print(f"计算结果: {results}")

    print("进程池任务完成,主进程退出。")

Pool.map()方法非常适合将一个函数应用到一系列输入上。除了mapPool还提供了applyapply_asyncstarmap等方法,以满足不同场景的需求,比如异步执行或处理多个参数。

为什么Python多进程能提升性能,而多线程不行?

我记得刚开始学习Python时,总觉得多线程就是解决并发问题的“银弹”,但很快就碰到了一个拦路虎——全局解释器锁(Global Interpreter Lock,简称GIL)。简单来说,GIL是Python解释器的一个机制,它确保在任何给定时刻,只有一个线程在执行Python字节码。这意味着,即使你的机器有多个CPU核心,Python的多线程在执行CPU密集型任务时,也无法真正地并行利用这些核心,因为GIL会强制它们轮流执行。它更像是“并发”而非“并行”,在CPU密集型场景下,性能提升微乎其微,甚至可能因为线程切换的开销而变慢。

多进程则完全不同。每个进程都有自己独立的Python解释器实例和内存空间。这意味着它们各自拥有一个GIL,互不干扰。当一个进程被阻塞在I/O操作上时,另一个进程可以继续在不同的CPU核心上执行计算,而不会受到前一个进程的GIL限制。这使得多进程成为处理CPU密集型任务的理想选择,因为它能够真正地并行利用机器的多个CPU核心,从而带来显著的性能提升。

当然,多线程在I/O密集型任务(比如网络请求、文件读写)中依然有其价值。因为当一个线程等待I/O完成时,它会释放GIL,允许其他线程运行。但在纯粹的计算场景下,多进程才是实现并行计算的关键。

什么时候应该用多进程?多进程的适用场景与常见误区

选择多进程还是其他并发模型,关键在于你的任务类型。多进程最闪耀的舞台,无疑是那些CPU密集型的任务。想想看,如果你正在处理大量数据分析、进行复杂的科学计算、图像处理或者训练机器学习模型,这些任务往往需要大量的CPU时间。在这种情况下,将任务分解成多个独立的子任务,并让它们在不同的CPU核心上并行运行,就能极大地缩短总的执行时间。比如,我曾经处理过一个需要对数百万张图片进行特征提取的项目,如果单进程串行,那简直是灾难,但用了多进程池并行处理,效率提升了好几倍。

然而,多进程并非万能药,它也有自己的局限性和不适用的场景。一个常见的误区是,不管什么任务都一股脑地上多进程。如果你面对的是I/O密集型任务,比如频繁的网络请求、数据库查询或文件读写,那么多进程可能就不是最佳选择。在这种情况下,进程间的通信和创建销毁的开销,反而可能抵消并行带来的好处。对于I/O密集型任务,异步编程(如asyncio)或多线程(虽然有GIL,但在I/O阻塞时能切换)往往更合适。

RMI远程方法调用 word版
RMI远程方法调用 word版

Raza Microelectronics, Inc.(RMI公司)是勇于创新的信息基础架构半导体解决方案领导厂商,其产品广泛地被应用于改善不断演进的信息基础设施。在这个演进过程中,数据中心和家庭之间的连接在强度和速率方面都逐渐升级;安全和智能化已经成为每一个网络系统环境的要求;同时,边缘网络日益成为瓶颈,促使业界需要更具扩展能力及成本优势的智能网络接入方法。RMI公司为信息基础架构设计并提供多样化的解决方案,为下一代灵活的企业和数据中心应用、智能接入和数字影像系统奠定基础。 RMI远程方法调用目录 一、

下载

另外,多进程的启动开销相对较大。创建新进程需要复制父进程的内存空间(至少是写时复制),这比创建线程要重得多。所以,如果你的任务非常轻量,执行时间极短,或者你需要频繁地创建和销毁进程,那么这种开销可能会让你得不偿失。我见过一些项目,为了处理一些微不足道的计算,结果创建了成百上千个进程,最终性能反而下降了,这就是没搞清楚适用场景。

Python多进程编程中的数据共享与同步挑战

多进程最让人头疼的,可能就是数据怎么安全、高效地在它们之间流动了。因为每个进程都有自己独立的内存空间,默认情况下它们是无法直接访问彼此的数据的。如果处理不好,就可能出现各种奇怪的bug,调试起来还特别麻烦。

Python的multiprocessing模块提供了一些机制来处理进程间通信(IPC)和数据同步:

  1. 队列(Queue):这是最常用也是最推荐的进程间通信方式。multiprocessing.Queue是线程和进程安全的,它允许你将数据放入队列,然后由另一个进程从队列中取出。这非常适合生产者-消费者模型。

    from multiprocessing import Process, Queue
    
    def producer(q):
        for i in range(5):
            q.put(f"数据 {i}")
            print(f"生产者放入: 数据 {i}")
    
    def consumer(q):
        while True:
            data = q.get()
            if data == "STOP":
                break
            print(f"消费者取出: {data}")
    
    if __name__ == "__main__":
        q = Queue()
        p1 = Process(target=producer, args=(q,))
        p2 = Process(target=consumer, args=(q,))
    
        p1.start()
        p2.start()
    
        p1.join()
        q.put("STOP") # 发送停止信号
        p2.join()
        print("所有进程完成。")
  2. 管道(Pipe)multiprocessing.Pipe()返回一对连接对象,分别代表管道的两端。它们可以用于在两个进程之间进行双向通信。

  3. 共享内存(Shared Memory):对于需要直接共享大量数据的情况,可以使用multiprocessing.Valuemultiprocessing.Array。它们在进程间创建可共享的C类型数组或值。但使用共享内存需要非常小心,因为它没有内置的同步机制,容易出现竞态条件。

  4. 锁(Lock)和信号量(Semaphore):当多个进程需要访问或修改同一个共享资源(比如共享内存中的数据)时,必须使用同步原语来防止数据损坏。multiprocessing.Lock可以确保在任何给定时刻只有一个进程能够访问临界区。

    from multiprocessing import Process, Value, Lock
    import time
    
    def increment(val, lock):
        for _ in range(100000):
            with lock: # 使用with语句自动获取和释放锁
                val.value += 1
    
    if __name__ == "__main__":
        num = Value('i', 0) # 'i' 表示整数
        lock = Lock()
    
        p1 = Process(target=increment, args=(num, lock))
        p2 = Process(target=increment, args=(num, lock))
    
        p1.start()
        p2.start()
    
        p1.join()
        p2.join()
    
        print(f"最终结果: {num.value}") # 期望是200000
  5. 管理器(Manager)multiprocessing.Manager可以创建一个服务器进程,其他进程可以通过它来访问共享的Python对象(如列表、字典、队列等)。这些对象会自动处理同步,使得数据共享变得更简单,但性能上可能会比直接使用队列或共享内存略有损耗,因为它涉及到网络通信。

在实际项目中,数据共享和同步是多进程编程中最容易出错的地方。不恰当的同步可能导致死锁(deadlock),即两个或多个进程无限期地等待彼此释放资源;或者出现竞态条件(race condition),即多个进程试图同时修改共享数据,导致结果不确定。所以在设计多进程方案时,务必仔细考虑数据的流向和访问模式,选择最合适的IPC机制,并确保正确的同步。

相关文章

数码产品性能查询
数码产品性能查询

该软件包括了市面上所有手机CPU,手机跑分情况,电脑CPU,电脑产品信息等等,方便需要大家查阅数码产品最新情况,了解产品特性,能够进行对比选择最具性价比的商品。

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

769

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

661

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

764

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

639

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1325

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

549

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

579

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

709

2023.08.11

excel表格操作技巧大全 表格制作excel教程
excel表格操作技巧大全 表格制作excel教程

Excel表格操作的核心技巧在于 熟练使用快捷键、数据处理函数及视图工具,如Ctrl+C/V(复制粘贴)、Alt+=(自动求和)、条件格式、数据验证及数据透视表。掌握这些可大幅提升数据分析与办公效率,实现快速录入、查找、筛选和汇总。

0

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 9.6万人学习

Django 教程
Django 教程

共28课时 | 3.3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号