0

0

如何使用Pandas进行条件筛选与多维度分组计数

DDD

DDD

发布时间:2025-07-19 21:04:01

|

963人浏览过

|

来源于php中文网

原创

如何使用Pandas进行条件筛选与多维度分组计数

本文将详细介绍如何使用Pandas库,针对数据集中特定列(如NumericValue)中的缺失值(NaN)进行高效筛选,并在此基础上,根据多个维度(如SpatialDim和TimeDim)进行分组,最终统计满足条件的记录数量。通过实例代码,读者将掌握数据预处理和聚合分析的关键技巧,实现复杂条件下的数据汇总。

在数据分析实践中,我们经常面临这样的需求:从一个庞大的数据集中,首先筛选出满足特定条件(例如某个字段为缺失值)的记录,然后对这些筛选后的数据进行多维度分组,并计算每个分组内的记录数量。这种操作在数据清洗、异常值分析或特定条件下的业务指标统计中尤为常见。pandas作为python数据分析的核心库,提供了强大而灵活的工具来高效完成此类任务。

数据准备与加载

在开始数据处理之前,我们需要加载数据。通常,数据会以CSV、Excel或其他结构化格式存储。在本教程中,我们假设数据存储在一个名为space.csv的CSV文件中。

import pandas as pd

# 假设数据文件名为 'space.csv'
# 请确保该文件与你的Python脚本在同一目录下,或者提供完整路径
df = pd.read_csv('./space.csv', sep=',')

# 打印原始数据的前几行,以便了解其结构
print("原始数据:")
print(df.head())
print("\n")

为了方便演示,我们提供一个space.csv的示例内容:

Id,SpatialDimType,SpatialDim,TimeDim,Value,NumericValue,Low,High
32256659,COUNTRY,AND,2022,No data,,,
32256659,COUNTRY,AND,2022,No data,,,
32256659,COUNTRY,AND,2023,No data,,,
32256661,COUNTRY,ATG,2022,No data,,,
32256664,COUNTRY,AUS,2001,No data,,,
32256664,COUNTRY,AUS,2001,No data,,,
32256664,COUNTRY,AUS,2001,No data,,,
32256664,COUNTRY,AUS,2004,No data,,,
32256664,COUNTRY,AUS,2004,No data,,,
32256665,COUNTRY,AUT,2004,No data,,,

请注意,在CSV文件中,空值(例如NumericValue列)在Pandas读取时通常会被解析为NaN(Not a Number)。

核心操作:条件筛选与多维度分组计数

实现目标的关键步骤包括:

  1. 条件筛选:过滤出NumericValue列为NaN的行。
  2. 多维度分组:根据SpatialDim和TimeDim两列进行分组。
  3. 计数:统计每个分组中符合条件的记录数量。
  4. 结果整理:将计数结果转换为易于分析的DataFrame格式。
# 1. 条件筛选:过滤NumericValue为NaN的行
# 使用 .isna() 方法判断缺失值
filtered_df = df[df['NumericValue'].isna()]

# 2. 多维度分组与计数
# 使用 .groupby() 方法指定分组列
# 使用 .size() 方法计算每个分组的记录数量
grouped_counts = filtered_df.groupby(
    by=['SpatialDim', 'TimeDim']
).size()

# 3. 结果整理:将Series转换为DataFrame,并重命名计数列
# .reset_index() 将分组键从索引转换回列
# name='count' 为新的计数列指定名称
result_df = grouped_counts.reset_index(name='count')

print("筛选并分组计数后的结果:")
print(result_df)

完整代码示例

将上述步骤整合,形成一个完整的Python脚本:

千图设计室AI海报
千图设计室AI海报

千图网旗下的智能海报在线设计平台

下载
import pandas as pd

# 假设数据文件名为 'space.csv'
# 请确保该文件与你的Python脚本在同一目录下,或者提供完整路径
df = pd.read_csv('./space.csv', sep=',')

# 核心处理逻辑
# 1. 筛选 NumericValue 为 NaN 的行
# 2. 按 SpatialDim 和 TimeDim 进行分组
# 3. 计算每个分组的记录数量
# 4. 将结果重置索引,并将计数列命名为 'count'
result_df = df[df['NumericValue'].isna()].groupby(
    by=['SpatialDim', 'TimeDim']
).size().reset_index(name='count')

# 打印最终结果
print(result_df)

示例数据与运行结果

当使用上面提供的space.csv示例数据运行上述代码时,你将获得如下输出:

  SpatialDim  TimeDim  count
0        AND     2022      2
1        AND     2023      1
2        ATG     2022      1
3        AUS     2001      3
4        AUS     2004      2
5        AUT     2004      1

这个结果清晰地展示了在NumericValue为NaN的记录中,每个SpatialDim与TimeDim组合对应的记录数量。例如,SpatialDim为"AND",TimeDim为"2022"的记录有2条。

注意事项

  • 缺失值类型:Pandas的isna()方法能够识别多种类型的缺失值,包括numpy.nan、None以及在读取数据时被Pandas自动识别的空字符串等。如果你的数据中缺失值以其他形式(如特定字符串"N/A"、"null")表示,你可能需要在读取数据时使用na_values参数,或者在筛选前进行额外的替换操作(例如df.replace('N/A', pd.NA))。
  • 多重条件筛选:如果需要基于多个条件进行筛选,可以使用逻辑运算符(&表示“与”,|表示“或”)组合条件,例如:df[(df['NumericValue'].isna()) & (df['TimeDim'] == 2022)]。
  • 其他聚合函数:除了.size()用于计数外,groupby()对象还支持多种聚合函数,如.count()(非NaN值的数量)、.sum()、.mean()、.median()、.min()、.max()等。你可以根据分析需求选择合适的聚合方法。
  • 性能考量:对于非常大的数据集,链式操作(如本例中的一行代码)虽然简洁,但在某些情况下可能不如分步操作清晰。不过,Pandas内部对这类操作进行了优化,通常性能表现良好。如果遇到性能瓶颈,可以考虑使用apply或transform结合自定义函数,或者利用Dask等并行计算库。
  • 错误处理:在实际应用中,应考虑文件不存在等异常情况,使用try-except块来增强代码的健壮性。

总结

通过本教程,我们学习了如何利用Pandas库高效地完成“条件筛选 + 多维度分组计数”这一常见的数据分析任务。核心在于灵活运用df[condition]进行数据筛选,结合groupby()进行分组,并使用.size()或.count()进行聚合。掌握这些技巧将极大地提升你在Python中处理和分析结构化数据的能力。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

716

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

627

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

743

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1236

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

575

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

699

2023.08.11

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

65

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号