0

0

使用 Pandas 向 Excel 添加新列并填充数据

DDD

DDD

发布时间:2025-07-21 19:30:01

|

1094人浏览过

|

来源于php中文网

原创

使用 pandas 向 excel 添加新列并填充数据

本文旨在解决使用 Pandas 向 Excel 文件添加新列时,仅添加了列名而没有填充数据的问题。通过分析常见原因和提供可行的解决方案,帮助开发者正确地向 DataFrame 添加新列并根据条件填充相应的值。本文将重点介绍使用 np.where 函数进行条件赋值的方法,并提供示例代码。

在使用 Pandas 处理 Excel 数据时,经常需要向现有的 DataFrame 添加新的列。一个常见的问题是,虽然新列成功添加,但所有单元格都是空的。这通常是因为在添加列时,没有正确地为新列赋值,或者赋值逻辑存在问题。以下介绍一种使用 np.where 函数,基于条件判断来填充新列值的方法。

使用 np.where 进行条件赋值

np.where 函数是 NumPy 库中的一个强大工具,它允许你根据条件从两个数组中选择元素。在 Pandas 中,我们可以利用 np.where 来根据 DataFrame 中现有列的值,为新列赋值。

其基本语法如下:

import numpy as np
df['new_column'] = np.where(condition, value_if_true, value_if_false)
  • condition: 一个布尔数组,用于指定条件。
  • value_if_true: 如果条件为真,则将该值赋给新列。
  • value_if_false: 如果条件为假,则将该值赋给新列。

示例

传媒公司模板(RTCMS)1.0
传媒公司模板(RTCMS)1.0

传媒企业网站系统使用热腾CMS(RTCMS),根据网站板块定制的栏目,如果修改栏目,需要修改模板相应的标签。站点内容均可在后台网站基本设置中添加。全站可生成HTML,安装默认动态浏览。并可以独立设置SEO标题、关键字、描述信息。源码包中带有少量测试数据,安装时可选择演示安装或全新安装。如果全新安装,后台内容充实后,首页才能完全显示出来。(全新安装后可以删除演示数据用到的图片,目录在https://

下载

假设我们有一个 DataFrame dfH,其中包含 cellname1、cellname1value、cellname2、cellname2value、cellname3、cellname3value 等列。我们希望添加 resultcellname 和 resultcellnamevalue 两列,并根据以下条件填充它们:

  • 如果 cellname1 等于 cellname2 且 cellname1value 等于 cellname2value,则 resultcellname 的值为 cellname1,resultcellnamevalue 的值为 cellname1value。
  • 如果 cellname1 等于 cellname3 且 cellname1value 等于 cellname3value,则 resultcellname 的值为 cellname1,resultcellnamevalue 的值为 cellname1value。
  • 如果 cellname2 等于 cellname3 且 cellname2value 等于 cellname3value,则 resultcellname 的值为 cellname2,resultcellnamevalue 的值为 cellname2value。

以下代码展示了如何使用 np.where 实现这个逻辑:

import pandas as pd
import numpy as np

# 假设 dfH 已经存在并包含数据
# 例如:
data = {'cellname1': ['A', 'B', 'C', 'A'],
        'cellname1value': [1, 2, 3, 1],
        'cellname2': ['A', 'C', 'C', 'B'],
        'cellname2value': [1, 4, 3, 5],
        'cellname3': ['A', 'B', 'C', 'A'],
        'cellname3value': [1, 2, 3, 1]}
dfH = pd.DataFrame(data)

# 初始化新列
dfH['resultcellname'] = ''
dfH['resultcellnamevalue'] = ''

# 检查 if 1=2
dfH['resultcellname'] = np.where((dfH['cellname1']==dfH['cellname2']) & (dfH['cellname1value']==dfH['cellname2value']), dfH['cellname1'], dfH['resultcellname'])
dfH['resultcellnamevalue'] = np.where((dfH['cellname1']==dfH['cellname2']) & (dfH['cellname1value']==dfH['cellname2value']), dfH['cellname1value'], dfH['resultcellnamevalue'])

# 检查 if 1=3
dfH['resultcellname'] = np.where((dfH['cellname1']==dfH['cellname3']) & (dfH['cellname1value']==dfH['cellname3value']), dfH['cellname1'], dfH['resultcellname'])
dfH['resultcellnamevalue'] = np.where((dfH['cellname1']==dfH['cellname3']) & (dfH['cellname1value']==dfH['cellname3value']), dfH['cellname1value'], dfH['resultcellnamevalue'])

# 检查 if 2=3
dfH['resultcellname'] = np.where((dfH['cellname2']==dfH['cellname3']) & (dfH['cellname2value']==dfH['cellname3value']), dfH['cellname2'], dfH['resultcellname'])
dfH['resultcellnamevalue'] = np.where((dfH['cellname2']==dfH['cellname3']) & (dfH['cellname2value']==dfH['cellname3value']), dfH['cellname2value'], dfH['resultcellnamevalue'])

print(dfH)

注意事项

  • 确保 condition 是一个布尔数组,其长度与 DataFrame 的行数相同。
  • value_if_true 和 value_if_false 可以是单个值或数组。
  • 如果需要处理多个条件,可以使用多个 np.where 语句,或者使用 Pandas 的 apply 函数。
  • 在写入 Excel 文件之前,确保 DataFrame 的数据类型正确。

总结

使用 np.where 函数是向 Pandas DataFrame 添加新列并根据条件填充数据的有效方法。通过理解 np.where 的工作原理并结合实际需求,可以灵活地处理各种数据处理任务。在实际应用中,需要根据具体的数据结构和业务逻辑,调整条件判断和赋值方式,以达到最佳效果。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

51

2025.12.04

数据类型有哪几种
数据类型有哪几种

数据类型有整型、浮点型、字符型、字符串型、布尔型、数组、结构体和枚举等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

301

2023.10.31

php数据类型
php数据类型

本专题整合了php数据类型相关内容,阅读专题下面的文章了解更多详细内容。

222

2025.10.31

treenode的用法
treenode的用法

​在计算机编程领域,TreeNode是一种常见的数据结构,通常用于构建树形结构。在不同的编程语言中,TreeNode可能有不同的实现方式和用法,通常用于表示树的节点信息。更多关于treenode相关问题详情请看本专题下面的文章。php中文网欢迎大家前来学习。

534

2023.12.01

C++ 高效算法与数据结构
C++ 高效算法与数据结构

本专题讲解 C++ 中常用算法与数据结构的实现与优化,涵盖排序算法(快速排序、归并排序)、查找算法、图算法、动态规划、贪心算法等,并结合实际案例分析如何选择最优算法来提高程序效率。通过深入理解数据结构(链表、树、堆、哈希表等),帮助开发者提升 在复杂应用中的算法设计与性能优化能力。

17

2025.12.22

深入理解算法:高效算法与数据结构专题
深入理解算法:高效算法与数据结构专题

本专题专注于算法与数据结构的核心概念,适合想深入理解并提升编程能力的开发者。专题内容包括常见数据结构的实现与应用,如数组、链表、栈、队列、哈希表、树、图等;以及高效的排序算法、搜索算法、动态规划等经典算法。通过详细的讲解与复杂度分析,帮助开发者不仅能熟练运用这些基础知识,还能在实际编程中优化性能,提高代码的执行效率。本专题适合准备面试的开发者,也适合希望提高算法思维的编程爱好者。

13

2026.01.06

excel对比两列数据异同
excel对比两列数据异同

Excel作为数据的小型载体,在日常工作中经常会遇到需要核对两列数据的情况,本专题为大家提供excel对比两列数据异同相关的文章,大家可以免费体验。

1377

2023.07.25

excel重复项筛选标色
excel重复项筛选标色

excel的重复项筛选标色功能使我们能够快速找到和处理数据中的重复值。本专题为大家提供excel重复项筛选标色的相关的文章、下载、课程内容,供大家免费下载体验。

403

2023.07.31

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

36

2026.01.14

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
React 教程
React 教程

共58课时 | 3.6万人学习

Pandas 教程
Pandas 教程

共15课时 | 0.9万人学习

ASP 教程
ASP 教程

共34课时 | 3.5万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号