0

0

Python如何实现多任务?并发与并行编程解析

看不見的法師

看不見的法師

发布时间:2025-07-31 10:13:01

|

321人浏览过

|

来源于php中文网

原创

python实现多任务的核心在于根据任务类型选择合适的模块。1. 对于cpu密集型任务,应使用multiprocessing模块,通过创建独立进程绕过gil限制,真正实现并行计算;2. 对于i/o密集型任务,可选用threading或asyncio模块,其中threading适用于传统并发场景,而asyncio通过事件循环和协程实现高效异步i/o处理,适合高并发网络服务、爬虫等场景。

Python如何实现多任务?并发与并行编程解析

Python实现多任务,核心在于理解并发与并行。简单来说,就是让程序同时处理多件事,这主要通过标准库中的threadingasyncio(侧重并发)和multiprocessing(侧重并行)模块来完成。它们各自有其适用场景和内在机制,选择哪个,往往取决于你任务的性质。

Python如何实现多任务?并发与并行编程解析

解决方案

要让Python程序同时处理多项任务,我们通常会考虑三种主要策略:线程(threading)、进程(multiprocessing)和异步I/O(asyncio)。这三者各有千秋,理解它们背后的原理,尤其是Python全局解释器锁(GIL)的影响,是做出正确选择的关键。

对于CPU密集型任务,比如大量计算,我们倾向于使用multiprocessing模块。它通过创建独立的进程来规避GIL的限制,每个进程都有自己的Python解释器和内存空间,因此可以真正利用多核CPU并行执行任务。

立即学习Python免费学习笔记(深入)”;

Python如何实现多任务?并发与并行编程解析
import multiprocessing
import time

def cpu_bound_task(n):
    result = sum(i*i for i in range(n))
    return result

if __name__ == "__main__":
    start_time = time.time()
    # 创建多个进程来执行CPU密集型任务
    with multiprocessing.Pool(processes=4) as pool:
        # 假设我们要计算四次相同的大任务
        results = pool.map(cpu_bound_task, [10**7, 10**7, 10**7, 10**7])

    print(f"多进程CPU密集型任务耗时: {time.time() - start_time:.4f} 秒")
    print(f"结果: {results}")

而对于I/O密集型任务,比如网络请求、文件读写或者等待数据库响应,threading模块和asyncio模块则更为常见。尽管threading受GIL限制,无法真正并行执行CPU操作,但在等待I/O时,Python解释器会释放GIL,允许其他线程运行。这使得它在处理大量并发I/O时依然有效。

import threading
import time
import requests # 假设有网络请求

def io_bound_task(url):
    print(f"开始下载: {url}")
    try:
        response = requests.get(url, timeout=5) # 模拟网络请求
        print(f"下载完成: {url}, 状态码: {response.status_code}")
    except requests.exceptions.RequestException as e:
        print(f"下载失败: {url}, 错误: {e}")

if __name__ == "__main__":
    urls = [
        "https://www.baidu.com",
        "https://www.google.com", # 在国内可能无法访问
        "https://www.bing.com",
        "https://www.yahoo.com"
    ]

    start_time = time.time()
    threads = []
    for url in urls:
        thread = threading.Thread(target=io_bound_task, args=(url,))
        threads.append(thread)
        thread.start()

    for thread in threads:
        thread.join() # 等待所有线程完成

    print(f"多线程I/O密集型任务耗时: {time.time() - start_time:.4f} 秒")

asyncio则是Python处理并发I/O的现代方式,它通过事件循环(event loop)和协程(coroutines)实现协作式多任务。它在单个线程内运行,因此没有GIL的并行限制,但要求你的代码是“可等待的”(awaitable),通常用于构建高性能的网络服务。

Python如何实现多任务?并发与并行编程解析
import asyncio
import aiohttp # 异步HTTP客户端库

async def async_io_bound_task(url):
    print(f"异步开始下载: {url}")
    async with aiohttp.ClientSession() as session:
        try:
            async with session.get(url, timeout=5) as response:
                print(f"异步下载完成: {url}, 状态码: {response.status}")
        except aiohttp.ClientError as e:
            print(f"异步下载失败: {url}, 错误: {e}")

async def main_async():
    urls = [
        "https://www.baidu.com",
        "https://www.google.com", # 在国内可能无法访问
        "https://www.bing.com",
        "https://www.yahoo.com"
    ]
    tasks = [async_io_bound_task(url) for url in urls]
    await asyncio.gather(*tasks)

if __name__ == "__main__":
    start_time = time.time()
    asyncio.run(main_async())
    print(f"异步I/O密集型任务耗时: {time.time() - start_time:.4f} 秒")

Python中的“并发”究竟意味着什么?它和“并行”有何不同?

说实话,这俩概念刚接触时确实挺容易混淆的。我个人喜欢用一个比喻来解释:想象你是一个咖啡师。

并发(Concurrency):你一个人(一个CPU核心)在同时处理多位顾客的订单。你可能先给A顾客磨豆,磨到一半,B顾客来了,你放下A的豆子去给B打奶泡,奶泡打好了再回来给A冲咖啡。虽然你“看起来”同时在服务多位顾客,但实际上在任何一个瞬间,你都只在做一件事。Python的threading就是这种模式,尤其在I/O操作时,它能切换到另一个线程,让等待时间不被浪费。asyncio也是并发,它更像是你规划好了所有步骤,知道什么时候可以暂停当前任务去处理另一个,效率更高。

并行(Parallelism):现在你不是一个人了,你和你的同事们(多个CPU核心)都在各自的咖啡机前,同时为不同的顾客制作咖啡。A顾客的咖啡由你制作,B顾客的咖啡由你的同事制作,大家互不干扰,真正地同时进行。Python的multiprocessing就是这种模式,每个进程都在独立的CPU核心上运行,互不影响,可以真正地同时执行计算任务。

核心区别在于:并发是“看起来同时进行”,通过快速切换任务来实现;并行是“真正同时进行”,需要多个处理器核心支持。Python的GIL(全局解释器锁)是理解这一点的关键。它确保了在任何给定时刻,只有一个线程能执行Python字节码。这意味着,即使你启动了多个线程,它们也无法在多核CPU上同时执行CPU密集型任务。但multiprocessing因为创建了独立的进程,每个进程都有自己的解释器,所以可以绕过GIL,实现真正的并行。

白月生产企业订单管理系统GBK2.0  Build 080807
白月生产企业订单管理系统GBK2.0 Build 080807

请注意以下说明:1、本程序允许任何人免费使用。2、本程序采用PHP+MYSQL架构编写。并且经过ZEND加密,所以运行环境需要有ZEND引擎支持。3、需要售后服务的,请与本作者联系,联系方式见下方。4、本程序还可以与您的网站想整合,可以实现用户在线服务功能,可以让客户管理自己的信息,可以查询自己的订单状况。以及返点信息等相关客户利益的信息。这个功能可提高客户的向心度。安装方法:1、解压本系统,放在

下载

什么时候该用threading,什么时候又该选择multiprocessing

这是一个非常实际的问题,我自己在项目里做技术选型时也经常会纠结。我的经验是,关键在于判断你的任务是“I/O密集型”还是“CPU密集型”。

如果你的任务大部分时间都在等待外部资源,比如等待网络响应、等待文件读写完成、等待数据库查询结果,那么这通常是I/O密集型任务。这种情况下,threading或者asyncio会是更好的选择。当一个线程发起I/O请求并进入等待状态时,GIL会被释放,允许其他线程继续执行Python代码。这样,CPU就不会闲置,程序的整体吞吐量就能提升。比如,你要同时从几十个网站抓取数据,用线程池或asyncio并发请求,效率会比单线程挨个请求高得多。我个人在写一些爬虫或者并发API调用时,通常会优先考虑asyncio,因为它在处理大量并发连接时,资源消耗和性能表现都非常出色。如果项目历史原因或者逻辑简单,threading也是个不错的选择,它更符合传统的多线程编程思维。

相反,如果你的任务需要大量的计算,比如图像处理、科学计算、数据分析中的复杂算法执行,并且这些计算几乎不涉及等待外部资源,那么这属于CPU密集型任务。在这种情况下,threading几乎帮不上忙,因为GIL会阻止多个线程同时在多核上执行Python字节码。你需要使用multiprocessing。通过创建多个进程,每个进程运行在独立的CPU核心上,它们各自拥有独立的Python解释器,完全避开了GIL的限制,从而实现真正的并行计算,显著缩短总运行时间。当然,进程间通信(IPC)会引入一些额外的复杂性,比如共享内存、队列、管道等,你需要仔细设计这些部分。

简单总结一下:

  • I/O密集型threading (传统、简单) 或 asyncio (现代、高效、适合高并发)。
  • CPU密集型multiprocessing (真正并行,但进程间通信复杂)。

Python的异步编程(asyncio)是多任务的未来吗?它适合哪些场景?

“未来”这个词可能有点重,但asyncio无疑是Python在处理高并发I/O任务方面的一个非常重要的发展方向,并且在很多领域已经成为主流。我个人认为,对于某些特定类型的应用,它确实代表了更高效、更优雅的解决方案。

asyncio的核心思想是“协作式多任务”和“事件循环”。它不是通过操作系统线程的抢占式调度来实现并发,而是通过asyncawait关键字,让程序员明确地指示代码在何时可以暂停当前任务,去处理其他等待中的任务。当一个协程遇到await一个I/O操作时,它会把控制权交还给事件循环,事件循环就可以去执行其他已经准备好的协程,直到之前等待的I/O操作完成,再回来继续执行。

这种模式的优势非常明显:

  1. 极高的并发能力:由于所有任务都在一个线程内运行,上下文切换的开销远小于多线程,可以轻松处理成千上万的并发连接。
  2. 避免GIL问题:因为它本身就是单线程的,所以不存在GIL限制CPU密集型任务并行的问题(当然,它也无法让CPU密集型任务并行)。
  3. 资源消耗低:协程比线程轻量得多,创建和销毁的开销很小,内存占用也更少。
  4. 代码结构清晰:通过async/await,异步代码看起来更像同步代码,避免了回调地狱(callback hell)的问题,提高了可读性和可维护性。

那么,它适合哪些场景呢?

  • 高性能网络服务:构建Web服务器(如FastAPI、Sanic)、API网关、WebSocket服务器等,需要同时处理大量并发连接的场景。
  • 网络爬虫/数据抓取:需要同时向大量网站发起请求并等待响应,asyncio能显著提高抓取效率。
  • 实时数据处理:例如处理消息队列(Kafka、RabbitMQ)中的大量消息,或者构建流式数据处理系统。
  • 数据库操作:当使用支持异步的数据库驱动时,可以高效地并发执行数据库查询。

当然,asyncio也有它的学习曲线。你需要改变一些传统的编程思维,习惯async/await的语法,并且确保你使用的所有库都有对应的异步版本(或者能够很好地与异步代码集成)。如果你的任务主要是CPU密集型,或者涉及大量阻塞式的同步I/O操作且无法替换为异步库,那么asyncio可能不是最佳选择,你可能还是需要考虑multiprocessing。但对于现代Web服务和网络应用,asyncio无疑提供了一个强大且优雅的解决方案。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

746

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1261

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

Java 项目构建与依赖管理(Maven / Gradle)
Java 项目构建与依赖管理(Maven / Gradle)

本专题系统讲解 Java 项目构建与依赖管理的完整体系,重点覆盖 Maven 与 Gradle 的核心概念、项目生命周期、依赖冲突解决、多模块项目管理、构建加速与版本发布规范。通过真实项目结构示例,帮助学习者掌握 从零搭建、维护到发布 Java 工程的标准化流程,提升在实际团队开发中的工程能力与协作效率。

9

2026.01.12

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Node.js 教程
Node.js 教程

共57课时 | 8.4万人学习

CSS3 教程
CSS3 教程

共18课时 | 4.4万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号