
本文介绍了在Polars DataFrame中高效复制行的方法,重点讲解了.repeat_by()和.flatten()函数的配合使用。通过示例代码,展示了如何将DataFrame中的每一行复制指定的次数,并最终生成一个新的DataFrame,其中包含重复的行。该方法简洁高效,避免了使用map_elements等复杂操作,提升了数据处理的性能。
在数据分析和处理中,经常会遇到需要复制DataFrame中某些行的情况,例如,在可视化、模拟或数据增强等场景下。Polars是一个高性能的数据处理库,提供了多种方法来操作DataFrame。本文将介绍一种简洁高效的方法,使用.repeat_by()和.flatten()函数来实现行的复制。
Polars提供了一个名为.repeat_by()的表达式,它可以将DataFrame中的每一行重复指定的次数。然而,直接使用.repeat_by()会产生嵌套的列表结构。为了将结果展开成一个标准的DataFrame,我们需要配合使用.flatten()函数。
以下是一个示例,展示了如何使用这两个函数来复制DataFrame中的行:
import polars as pl
df = pl.DataFrame({ "key": [1, 2, 3], "value": [4, 5, 6] })
df = df.select(pl.all().repeat_by(2).flatten())
print(df)代码解释:
输出结果:
shape: (6, 2) ┌─────┬───────┐ │ key ┆ value │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═══════╡ │ 1 ┆ 4 │ │ 1 ┆ 4 │ │ 2 ┆ 5 │ │ 2 ┆ 5 │ │ 3 ┆ 6 │ │ 3 ┆ 6 │ └─────┴───────┘
可以看到,原始DataFrame中的每一行都被复制了一次。
.repeat_by()的参数不仅可以是常量,还可以是一个Series,从而允许对不同的行应用不同的复制次数。
import polars as pl
df = pl.DataFrame({ "key": [1, 2, 3], "value": [4, 5, 6] })
repeat_counts = pl.Series("counts", [1, 2, 3])
df = df.with_columns(repeat_counts = repeat_counts)
df = df.select(pl.all().repeat_by("counts").flatten().drop("counts"))
print(df)在这个例子中,repeat_counts Series指定了每一行应该重复的次数。第一行复制1次,第二行复制2次,第三行复制3次。
输出结果:
shape: (6, 2) ┌─────┬───────┐ │ key ┆ value │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═══════╡ │ 1 ┆ 4 │ │ 2 ┆ 5 │ │ 2 ┆ 5 │ │ 3 ┆ 6 │ │ 3 ┆ 6 │ │ 3 ┆ 6 │ └─────┴───────┘
本文介绍了一种在Polars DataFrame中高效复制行的方法,即使用.repeat_by()和.flatten()函数的配合。这种方法简洁高效,避免了使用复杂的map_elements操作,并且可以灵活地控制每一行的复制次数。掌握这种方法可以帮助你更高效地处理数据,提升数据分析和处理的效率。
以上就是Polars高效复制行:使用repeat_by和flatten方法的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号