0

0

基于DataFrame中ID列构建多个不同DataFrame

花韻仙語

花韻仙語

发布时间:2025-08-06 17:46:14

|

621人浏览过

|

来源于php中文网

原创

基于dataframe中id列构建多个不同dataframe

本文将介绍如何基于包含缺失值(NaN)的DataFrame,根据特定ID生成规则,构建多个只包含特定列的DataFrame。核心思想是根据某一列的非缺失值来确定ID,然后基于此ID列,分别提取其他列的非缺失值,最终生成多个目标DataFrame。

问题描述

假设我们有一个DataFrame,其中包含多个NaN值。我们的目标是基于该DataFrame构建三个不同的DataFrame,每个DataFrame包含一个ID列和一个原始DataFrame中的列。ID的生成规则是:从某一列(例如'a'列)的非NaN单元格开始,到下一个非NaN单元格为止,这些行都具有相同的ID。

解决方案

以下是使用pandas实现此目标的步骤:

  1. 创建ID列: 基于DataFrame的'a'列的非NaN值生成ID列。使用notna().cumsum()方法可以实现此目的。notna()返回一个布尔Series,指示每个值是否为非NaN。cumsum()计算累积和,每当遇到非NaN值时,累积和就会增加,从而为每个连续的非NaN值块分配唯一的ID。
  2. 创建目标DataFrame: 对于每个要提取的列('a','b','c'),创建一个新的DataFrame,其中包含'id'列和目标列。使用dropna()方法删除包含NaN值的行。
import pandas as pd
import numpy as np

# 示例DataFrame
df = pd.DataFrame({'a':[10, np.nan, np.nan, 22, np.nan], 'b':[23, 12, 7, 4, np.nan],  'c':[13, np.nan, np.nan, np.nan, 65]})

# 创建ID列
df['id'] = df['a'].notna().cumsum()

# 创建目标DataFrame
df_a = df[['id','a']].dropna()
df_b = df[['id','b']].dropna()
df_c = df[['id','c']].dropna()

print("df_a:\n", df_a)
print("\ndf_b:\n", df_b)
print("\ndf_c:\n", df_c)

代码解释:

  • df['a'].notna(): 创建一个布尔Series,如果'a'列中的值不是NaN,则为True,否则为False。
  • cumsum(): 计算上述布尔Series的累积和。每当遇到True(非NaN值)时,累积和就会增加。
  • df[['id','a']]: 创建一个新的DataFrame,其中包含'id'列和'a'列。
  • dropna(): 删除新DataFrame中包含NaN值的行。

结果

运行上述代码将生成三个DataFrame:df_a,df_b和df_c,它们分别包含'id'列和'a','b'和'c'列的非NaN值。

kgogoprime
kgogoprime

KGOGOMall 是一套采用 Php + MySql 开发的基于 WEB 应用的 B/S 架构的B2C网上商店系统。具有完善的商品管理、订单管理、销售统计、新闻管理、结算系统、税率系统、模板系统、搜索引擎优化,数据备份恢复,会员积分折扣功能,不同的会员有不同的折扣,支持多语言,模板和代码分离等,轻松创建属于自己的个性化用户界面。主要面向企业和大中型网商提供最佳保障,最大化满足客户目前及今后的独立

下载

重置索引 (可选)

如果需要,可以使用reset_index(drop=True)方法重置结果DataFrame的索引,使其从0开始连续编号。

df_a = df[['id','a']].dropna().reset_index(drop=True)
df_b = df[['id','b']].dropna().reset_index(drop=True)
df_c = df[['id','c']].dropna().reset_index(drop=True)

print("df_a with reset index:\n", df_a)

drop=True参数防止将旧索引添加到DataFrame中作为新列。

总结

本教程演示了如何基于包含缺失值的DataFrame,根据特定ID生成规则,构建多个不同的DataFrame。关键步骤包括创建ID列和使用dropna()方法删除包含NaN值的行。此方法可以灵活地应用于各种数据处理场景,以提取和组织所需的数据子集。

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

51

2025.12.04

Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

4

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

18

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

28

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

5

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

63

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

32

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

73

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

20

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号