
本文将介绍如何基于包含缺失值(NaN)的DataFrame,根据特定ID生成规则,构建多个只包含特定列的DataFrame。核心思想是根据某一列的非缺失值来确定ID,然后基于此ID列,分别提取其他列的非缺失值,最终生成多个目标DataFrame。
假设我们有一个DataFrame,其中包含多个NaN值。我们的目标是基于该DataFrame构建三个不同的DataFrame,每个DataFrame包含一个ID列和一个原始DataFrame中的列。ID的生成规则是:从某一列(例如'a'列)的非NaN单元格开始,到下一个非NaN单元格为止,这些行都具有相同的ID。
以下是使用pandas实现此目标的步骤:
import pandas as pd
import numpy as np
# 示例DataFrame
df = pd.DataFrame({'a':[10, np.nan, np.nan, 22, np.nan], 'b':[23, 12, 7, 4, np.nan], 'c':[13, np.nan, np.nan, np.nan, 65]})
# 创建ID列
df['id'] = df['a'].notna().cumsum()
# 创建目标DataFrame
df_a = df[['id','a']].dropna()
df_b = df[['id','b']].dropna()
df_c = df[['id','c']].dropna()
print("df_a:\n", df_a)
print("\ndf_b:\n", df_b)
print("\ndf_c:\n", df_c)代码解释:
运行上述代码将生成三个DataFrame:df_a,df_b和df_c,它们分别包含'id'列和'a','b'和'c'列的非NaN值。
如果需要,可以使用reset_index(drop=True)方法重置结果DataFrame的索引,使其从0开始连续编号。
df_a = df[['id','a']].dropna().reset_index(drop=True)
df_b = df[['id','b']].dropna().reset_index(drop=True)
df_c = df[['id','c']].dropna().reset_index(drop=True)
print("df_a with reset index:\n", df_a)drop=True参数防止将旧索引添加到DataFrame中作为新列。
本教程演示了如何基于包含缺失值的DataFrame,根据特定ID生成规则,构建多个不同的DataFrame。关键步骤包括创建ID列和使用dropna()方法删除包含NaN值的行。此方法可以灵活地应用于各种数据处理场景,以提取和组织所需的数据子集。
以上就是基于DataFrame中ID列构建多个不同DataFrame的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号