基于分组和条件判断添加新列:Pandas 教程

心靈之曲
发布: 2025-08-07 21:04:01
原创
920人浏览过

基于分组和条件判断添加新列:pandas 教程

本文旨在讲解如何使用 Pandas 在数据框中基于分组和条件判断来创建新的列。通过 groupby()、apply()、sort_values()、shift() 和 cumsum() 等函数,可以实现复杂的数据转换和计算,从而生成符合特定业务逻辑的新列。文章提供详细的代码示例和步骤解释,帮助读者理解并掌握该技巧。

Pandas 提供了强大的数据处理功能,其中基于分组和条件判断创建新列是一项常见的任务。本教程将介绍如何利用 Pandas 的 groupby()、apply() 以及其他相关函数,根据特定条件和分组规则生成新的列。

示例数据

首先,我们创建一个示例 DataFrame,它包含了id、date、date_difference、number 和 text 等列。我们的目标是基于 text 列进行分组,并根据 number 列的值以及日期顺序,生成一个新的 test 列。

import pandas as pd
import numpy as np

data = {
    'id': [1, 2, 3, 4, 5, 6, 7],
    'date': ['2019-02-01', '2019-02-10', '2019-02-25', '2019-03-05', '2019-03-16', '2019-04-05', '2019-05-15'],
    'date_difference': [None, 9, 15, 11, 10, 19, 40],
    'number': [1, 0, 1, 0, 0, 0, 0],
    'text': ['A', 'A', 'A', 'A', 'A', 'B', 'B']
}

df = pd.DataFrame(data)
print(df)
登录后复制

目标

对于每个 text 组,我们希望创建一个 test 列,其值取决于以下规则:

  1. 组内按 date 降序排列
  2. 如果 number 列的值为 0,则步长从 1 开始。
  3. 如果在组内找到 number 列的值为 1,则步长增加 1。
  4. 如果组内没有 number 列的值为 1,则步长保持为 1。

解决方案

以下代码展示了如何使用 Pandas 实现上述目标:

out = df.assign(
    test=df
    .groupby("text")
    .apply(
        lambda g: (
            g.sort_values(by="date", ascending=False)
            .number.shift(periods=1, fill_value=1)
            .cumsum()
        )
    )
    .droplevel("text")
)
print(out)
登录后复制

代码解释

  1. df.assign(test=...): 使用 assign 函数创建一个新的列 test,其值将由后续的计算得出。

  2. df.groupby("text"): 按照 text 列进行分组。这是实现按组计算的关键步骤。

    硅基智能
    硅基智能

    基于Web3.0的元宇宙,去中心化的互联网,高质量、沉浸式元宇宙直播平台,用数字化重新定义直播

    硅基智能 62
    查看详情 硅基智能
  3. .apply(lambda g: ...): 对每个分组应用一个 lambda 函数。这个 lambda 函数接收一个 DataFrame g 作为参数,代表一个分组的数据。

  4. g.sort_values(by="date", ascending=False): 在每个分组内,按照 date 列降序排列。

  5. .number.shift(periods=1, fill_value=1): 将 number 列的值向上移动一位。fill_value=1 表示对于移动后产生的缺失值,用 1 填充。 这一步是为了实现步长的累加。

  6. .cumsum(): 对移动后的 number 列进行累加求和。这会根据条件增加步长。

  7. .droplevel("text"): groupby 操作会引入一个额外的层级,使用 droplevel 函数移除该层级,使得结果的索引与原始 DataFrame 匹配。

输出结果

运行上述代码,将得到以下结果:

   id        date  date_difference  number text  test
0   1  2019-02-01              NaN       1    A     2
1   2  2019-02-10              9.0       0    A     2
2   3  2019-02-25             15.0       1    A     1
3   4  2019-03-05             11.0       0    A     1
4   5  2019-03-16             10.0       0    A     1
5   6  2019-04-05             19.0       0    B     1
6   7  2019-05-15             40.0       0    B     1
登录后复制

总结

本教程展示了如何使用 Pandas 的 groupby() 和 apply() 函数,结合 sort_values()、shift() 和 cumsum() 函数,基于分组和条件判断创建新的列。这种方法可以灵活地处理各种复杂的数据转换和计算任务。理解并掌握这些技巧,可以有效地提高数据处理的效率和准确性。

注意事项

  • 确保理解分组的含义和目标,选择合适的分组列。
  • 在 apply() 函数中,注意 lambda 函数的输入参数是 DataFrame,代表一个分组的数据。
  • 根据实际需求调整排序、移动和累加的参数。
  • 在处理大规模数据时,注意性能优化,避免不必要的计算。

以上就是基于分组和条件判断添加新列:Pandas 教程的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号