0

0

运行Python脚本怎样处理执行时的内存溢出 运行Python脚本的内存问题解决教程

絕刀狂花

絕刀狂花

发布时间:2025-08-08 09:02:01

|

736人浏览过

|

来源于php中文网

原创

优化数据结构,使用生成器、迭代器和高效库如numpy.memmap;2. 及时释放内存,合理使用del和gc.collect();3. 限制数据大小,分块处理任务;4. 使用__slots__减少实例内存开销;5. 将中间结果存入外部存储或数据库;6. 避免循环引用,使用weakref模块;7. 定期重启脚本或使用进程池隔离内存;8. 通过memory_profiler工具分析内存使用;9. 对大型数据集采用pandas的chunksize、dask、vaex或arrow等方案;10. 升级python版本并监控内存使用,确保及时发现内存瓶颈,从而有效避免python脚本长时间运行导致的内存溢出问题。

运行Python脚本怎样处理执行时的内存溢出 运行Python脚本的内存问题解决教程

运行Python脚本时遇到内存溢出,核心在于理解Python的内存管理机制,并采取针对性的策略。简单来说,就是优化你的代码,减少不必要的内存占用,或者借助一些工具来辅助。

解决方案

处理Python脚本执行时的内存溢出,可以从以下几个方面入手:

  1. 优化数据结构: 优先使用生成器、迭代器,避免一次性加载大量数据到内存。例如,读取大文件时,不要使用

    readlines()
    ,而是逐行读取。考虑使用
    numpy
    pandas
    等库提供的更节省内存的数据结构,如
    numpy.memmap
    用于处理大型数组。

    立即学习Python免费学习笔记(深入)”;

  2. 及时释放内存: 手动调用

    del
    语句删除不再使用的变量,或者使用
    gc.collect()
    强制进行垃圾回收。但要注意,过度使用
    gc.collect()
    可能会降低程序性能。

  3. 限制数据大小: 对于处理的数据量进行限制,例如,只加载部分数据进行处理,或者对数据进行抽样。

  4. 使用

    __slots__
    如果你的类定义了大量实例,可以考虑使用
    __slots__
    来减少每个实例的内存占用。
    __slots__
    会阻止Python为每个实例创建
    __dict__
    ,从而节省内存。

  5. 分块处理: 将大的计算任务分解成小的块,逐个处理,避免一次性占用大量内存。

  6. 使用外部存储: 将中间结果存储到磁盘或其他外部存储介质,而不是全部保存在内存中。

  7. 使用更高效的库: 对于一些特定的任务,使用更高效的库可以显著减少内存占用。例如,使用

    scikit-sparse
    代替
    scipy.sparse
    处理稀疏矩阵。

    谱乐AI
    谱乐AI

    谱乐AI,集成 Suno、Udio 等顶尖AI音乐模型的一站式AI音乐生成平台。

    下载
  8. 代码审查: 仔细审查代码,查找潜在的内存泄漏问题,例如,循环引用、未关闭的文件句柄等。

  9. 升级Python版本: 新版本的Python通常会包含内存管理方面的优化。

  10. 使用内存分析工具: 使用

    memory_profiler
    objgraph
    等工具来分析程序的内存使用情况,找出内存瓶颈。

如何避免Python脚本长时间运行导致内存溢出?

长时间运行的Python脚本更容易出现内存溢出,因为程序会不断地积累数据。除了上述的优化方法外,还可以考虑以下几点:

  • 定期重启: 对于一些允许短暂中断的服务,可以考虑定期重启脚本,释放内存。
  • 使用进程池: 将任务分发到多个进程中执行,每个进程都有自己的内存空间,可以避免单个进程占用过多内存。
    multiprocessing
    库可以实现进程池。
  • 监控内存使用情况: 使用
    psutil
    等库监控脚本的内存使用情况,当内存使用超过阈值时,采取相应的措施,例如,重启脚本、释放内存等。
  • 避免循环引用: 循环引用会导致垃圾回收器无法回收内存。可以使用
    weakref
    模块来解决循环引用问题。
  • 使用数据库: 将数据存储到数据库中,而不是全部保存在内存中。

如何使用
memory_profiler
分析Python脚本的内存使用情况?

memory_profiler
是一个用于分析Python脚本内存使用情况的工具。使用方法如下:

  1. 安装:
    pip install memory_profiler
  2. 使用: 在需要分析的函数或代码块前添加
    @profile
    装饰器。
  3. 运行: 使用
    python -m memory_profiler your_script.py
    运行脚本。

例如:

from memory_profiler import profile

@profile
def my_function():
    a = [1] * 1000000
    b = [2] * 2000000
    del b
    return a

if __name__ == '__main__':
    my_function()

运行后,

memory_profiler
会输出每一行代码的内存使用情况,可以帮助你找到内存瓶颈。

如何处理Python中大型数据集的内存问题?

处理大型数据集是Python中常见的内存问题来源。以下是一些处理大型数据集的策略:

  • 使用
    pandas
    chunksize
    参数:
    pandas
    read_csv
    read_excel
    等函数提供了
    chunksize
    参数,可以分块读取数据。
  • 使用
    dask
    dask
    是一个并行计算库,可以处理大于内存的数据集。
    dask
    可以将数据分成小的块,并行处理,并将结果合并。
  • 使用
    vaex
    vaex
    是一个懒加载的DataFrame库,可以处理TB级别的数据集。
    vaex
    只在需要时才加载数据到内存,可以显著减少内存占用。
  • 使用
    arrow
    arrow
    是一个跨语言的数据格式,可以高效地存储和处理大型数据集。
    pyarrow
    是Python的
    arrow
    库。
  • 使用数据库: 将数据存储到数据库中,使用SQL查询来处理数据。数据库可以高效地处理大型数据集,并且可以利用磁盘空间。

选择哪种策略取决于数据集的大小、计算的复杂度和可用的资源。一般来说,对于GB级别的数据集,可以使用

pandas
chunksize
参数或
dask
。对于TB级别的数据集,可以使用
vaex
或数据库。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

751

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

636

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

618

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1262

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

706

2023.08.11

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

36

2026.01.14

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
ASP 教程
ASP 教程

共34课时 | 3.5万人学习

PHP课程
PHP课程

共137课时 | 8.6万人学习

麻省理工大佬Python课程
麻省理工大佬Python课程

共34课时 | 5.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号