0

0

使用 DEAP 获取每一代最佳个体

心靈之曲

心靈之曲

发布时间:2025-08-08 20:04:13

|

843人浏览过

|

来源于php中文网

原创

使用 deap 获取每一代最佳个体

本文旨在介绍如何在使用 DEAP (Distributed Evolutionary Algorithms in Python) 库进行遗传算法编程时,高效地获取每一代种群中的最佳个体。通过结合 HallOfFame 类和 MultiStatistics 类,我们可以轻松地追踪并记录每一代的最优解,从而进行后续的分析或可视化。本文提供了一种简洁明了的方法,避免了复杂的过滤操作,提高了代码效率。

在使用 DEAP 进行遗传算法开发时,经常需要追踪每一代种群中的最佳个体,以便分析算法的收敛情况或者进行可视化展示。一种常见的方法是使用 tools.Statistics 和 tools.MultiStatistics 类来记录种群的统计信息。然而,如果直接在 Statistics 类中注册一个复杂的函数来查找最佳个体,可能会导致性能问题,尤其是在种群规模较大时。

更高效的方法是利用 DEAP 提供的 HallOfFame 类。HallOfFame 类可以自动记录种群中适应度最高的若干个个体。我们可以在每一代结束后,从 HallOfFame 中获取最佳个体,并将其添加到 MultiStatistics 中。

以下是一个示例代码:

import numpy as np
from deap import base, creator, tools, algorithms

# 假设已经定义了适应度函数 tspDistance 和常量 consts
# 例如:
# def tspDistance(individual):
#     # 计算个体的适应度
#     return np.sum(individual)

# consts.HALL_OF_FAME_SIZE = 1
# consts.P_CROSSOVER = 0.9
# consts.P_MUTATION = 0.1
# consts.MAX_GENERATIONS = 10

# 创建个体和种群
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)

toolbox = base.Toolbox()
# 假设已经定义了 toolbox.register("attribute", ...) 和 toolbox.register("individual", ...)
# 以及 toolbox.register("population", ...)
# 例如:
# toolbox.register("attribute", np.random.rand)
# toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attribute, n=10)
# toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# toolbox.register("mate", tools.cxTwoPoint)
# toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1)
# toolbox.register("select", tools.selTournament, tournsize=3)
# toolbox.register("evaluate", tspDistance)

# 初始化 HallOfFame
hof = tools.HallOfFame(consts.HALL_OF_FAME_SIZE)

# 配置统计信息
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register('min', np.min)
stats.register('mean', np.mean)

# 定义一个函数,从 HallOfFame 中获取最佳个体
def get_best_from_hof(hof):
    return hof[0] if hof else None  # 确保 hof 不为空

# 注册历史记录,使用 HallOfFame 中的最佳个体
history = tools.Statistics(lambda ind: ind)
history.register('hof', get_best_from_hof, hof=hof) # 传递 hof 对象

# 创建 MultiStatistics 对象
mstats = tools.MultiStatistics(fitness=stats, history=history)

# 初始化种群
population = toolbox.population(n=100)

# 运行遗传算法
population, logbook = algorithms.eaSimple(population, toolbox,
                                              cxpb=consts.P_CROSSOVER, mutpb=consts.P_MUTATION,
                                              ngen=consts.MAX_GENERATIONS, stats=mstats,
                                              halloffame=hof, verbose=True)


# 现在可以通过 logbook 访问每一代的最佳个体
# 例如:
# print(logbook.chapters['history'].select('hof'))

代码解释:

酷兔AI论文
酷兔AI论文

专业原创高质量、低查重,免费论文大纲,在线AI生成原创论文,AI辅助生成论文的神器!

下载
  1. HallOfFame: tools.HallOfFame(consts.HALL_OF_FAME_SIZE) 用于存储最优的个体。 consts.HALL_OF_FAME_SIZE 定义了存储的个体数量。 通常设置为1,只保留最佳个体。
  2. history.register('hof', get_best_from_hof, hof=hof): 关键在于这一行。 我们定义了一个 get_best_from_hof 函数,它接受 hof 对象作为参数,并返回 hof 中的第一个个体(即最佳个体)。 我们将这个函数注册到 history 统计信息中,并将 hof 对象传递给它。 这样,每一代都会从 HallOfFame 中获取最佳个体并记录下来。
  3. algorithms.eaSimple: 在 eaSimple 函数中,halloffame=hof 确保每一代更新 HallOfFame,stats=mstats 确保每一代记录统计信息,包括从 HallOfFame 中获取的最佳个体。

注意事项:

  • 确保 consts.HALL_OF_FAME_SIZE 设置为适当的值。如果只需要记录每一代的最佳个体,设置为 1 即可。
  • tspDistance 函数需要正确计算个体的适应度值。
  • 如果 HallOfFame 为空,hof[0] 会抛出异常。所以在 get_best_from_hof 函数中添加了 if hof else None 的判断。

总结:

通过结合 HallOfFame 和 MultiStatistics,可以更高效地获取每一代种群中的最佳个体。这种方法避免了在统计信息中进行复杂的过滤操作,提高了代码的执行效率。同时,它也使得代码更加简洁易懂,方便后续的分析和可视化。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

769

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

661

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

764

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

639

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1325

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

549

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

579

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

709

2023.08.11

Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

5

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 10万人学习

Django 教程
Django 教程

共28课时 | 3.3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号