0

0

Polars 中高效计算分组内时间序列差值

霞舞

霞舞

发布时间:2025-08-11 18:36:02

|

481人浏览过

|

来源于php中文网

原创

polars 中高效计算分组内时间序列差值

本文将详细介绍如何使用 Polars 库高效地计算 Pandas DataFrame 中按唯一 ID 分组的时间序列差值。我们将探讨如何利用 Polars 强大的 over() 窗口函数,结合 diff() 和 dt.total_seconds(),为每个 ID 生成会话之间的时间间隔,并处理起始时间戳的空值问题,从而避免低效的 map 或 apply 操作,实现高性能的数据处理。

1. 背景与挑战

在数据分析任务中,我们经常需要处理时间序列数据,例如计算用户会话之间的时间间隔、订单处理时长等。当数据按某个标识符(如用户 ID)分组时,挑战在于如何高效地计算每个组内连续记录之间的时间差。传统的 Pandas groupby().apply() 方法在处理大数据集时可能效率低下。对于 Polars 而言,虽然 map_groups() 提供了一定的灵活性,但其性能通常不如原生表达式。

我们的目标是,给定一个包含 ID 和 Timestamp 列的 DataFrame,为每个 ID 计算一个新列 time_between_sessions,表示当前会话与上一个会话之间的时间间隔。

2. 准备数据

首先,我们创建一个示例 Pandas DataFrame,并将其转换为 Polars DataFrame。确保 Timestamp 列被正确解析为日期时间类型,这是进行时间计算的基础。

import polars as pl
import pandas as pd

# 创建一个示例 DataFrame
data = {
    'ID': ['A', 'A', 'A', 'B', 'B', 'B'],
    'Timestamp': ['2023-01-01 10:00:00', '2023-01-01 10:30:00', '2023-01-01 11:00:00',
                  '2023-01-01 12:00:00', '2023-01-01 12:30:00', '2023-01-01 13:00:00']
}

df_pandas = pd.DataFrame(data)

# 将 Pandas DataFrame 转换为 Polars DataFrame
sessions_features = pl.from_pandas(df_pandas)

# 确保 Timestamp 列是日期时间类型
sessions_features = sessions_features.with_columns(
   pl.col("Timestamp").str.to_datetime()
)

print("原始 Polars DataFrame:")
print(sessions_features)

输出:

原始 Polars DataFrame:
shape: (6, 2)
┌─────┬─────────────────────┐
│ ID  ┆ Timestamp           │
│ --- ┆ ---                 │
│ str ┆ datetime[μs]        │
╞═════╪═════════════════════╡
│ A   ┆ 2023-01-01 10:00:00 │
│ A   ┆ 2023-01-01 10:30:00 │
│ A   ┆ 2023-01-01 11:00:00 │
│ B   ┆ 2023-01-01 12:00:00 │
│ B   ┆ 2023-01-01 12:30:00 │
│ B   ┆ 2023-01-01 13:00:00 │
└─────┴─────────────────────┘

3. 使用 pl.Expr.over() 高效计算时间差

Polars 提供了强大的表达式 API 和窗口函数,其中 pl.Expr.over() 是解决此类分组计算问题的理想选择。它允许我们在不显式使用 group_by() 的情况下,对指定分组(分区)执行聚合或转换操作。

核心思路是:

Interior AI
Interior AI

AI室内设计,上传室内照片自动帮你生成多种风格的室内设计图

下载
  1. pl.col("Timestamp").diff(): 计算 Timestamp 列的差值。diff() 函数会返回当前行与上一行之间的差值。对于每个分组的第一行,diff() 的结果将是 null。
  2. .dt.total_seconds(): 将时间差(Duration 类型)转换为总秒数(整数或浮点数)。
  3. .fill_null(0): 将每个分组第一行产生的 null 值填充为 0,因为它们是该 ID 的第一个会话,没有“上一个会话”。
  4. .over("ID"): 这是关键步骤,它告诉 Polars 在计算 diff() 之前,先根据 ID 列进行分区。这意味着 diff() 操作将在每个 ID 组内独立进行,而不是在整个 DataFrame 上。
  5. .alias("time_between_sessions"): 为新生成的列指定一个有意义的名称。

以下是实现代码:

# 计算每个 ID 的会话之间的时间差
sessions_features_with_time_diff = sessions_features.with_columns(
  pl.col("Timestamp")
    .diff()
    .dt.total_seconds()
    .fill_null(0)
    .over("ID")
    .alias("time_between_sessions")
)

print("\n计算时间差后的 Polars DataFrame:")
print(sessions_features_with_time_diff)

预期输出:

计算时间差后的 Polars DataFrame:
shape: (6, 3)
┌─────┬─────────────────────┬───────────────────────┐
│ ID  ┆ Timestamp           ┆ time_between_sessions │
│ --- ┆ ---                 ┆ ---                   │
│ str ┆ datetime[μs]        ┆ i64                   │
╞═════╪═════════════════════╪═══════════════════════╡
│ A   ┆ 2023-01-01 10:00:00 ┆ 0                     │
│ A   ┆ 2023-01-01 10:30:00 ┆ 1800                  │
│ A   ┆ 2023-01-01 11:00:00 ┆ 1800                  │
│ B   ┆ 2023-01-01 12:00:00 ┆ 0                     │
│ B   ┆ 2023-01-01 12:30:00 ┆ 1800                  │
│ B   ┆ 2023-01-01 13:00:00 ┆ 1800                  │
└─────┴─────────────────────┴───────────────────────┘

从输出可以看出,对于 ID 'A' 和 'B',它们各自的第一个会话的 time_between_sessions 值为 0,而后续会话的时间间隔则被正确计算为 1800 秒(30 分钟)。

4. 注意事项与最佳实践

  • 避免 map 或 apply 函数: 尽可能使用 Polars 的原生表达式 API,如 over()、group_by() 配合表达式,而不是 map_groups() 或 apply()。原生表达式经过高度优化,能够利用 Polars 的并行计算能力,从而在处理大数据集时提供卓越的性能。
  • 数据类型: 确保时间戳列为 Polars 的 Datetime 类型。如果数据源是字符串,需要使用 str.to_datetime() 进行转换。
  • 排序: diff() 操作依赖于行的顺序。在进行时间差计算之前,如果数据未按 ID 和 Timestamp 排序,应先使用 sort(["ID", "Timestamp"]) 进行排序,以确保计算的正确性。本示例中,输入数据已是按 ID 和时间戳排序的。
  • 空值处理: diff() 必然会在每个分组的第一行产生 null 值。根据业务需求,可以使用 fill_null() 将其填充为 0 或其他有意义的值。

5. 总结

通过利用 Polars 的 pl.Expr.over() 窗口函数,我们可以优雅且高效地在每个分组内执行时间序列的差值计算。这种方法避免了传统循环或低效的 apply 操作,充分发挥了 Polars 的列式和并行处理优势,是处理大规模时间序列数据时的首选方案。掌握 over() 的使用,将极大提升你在 Polars 中进行复杂分组计算的能力。

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

51

2025.12.04

数据类型有哪几种
数据类型有哪几种

数据类型有整型、浮点型、字符型、字符串型、布尔型、数组、结构体和枚举等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

301

2023.10.31

php数据类型
php数据类型

本专题整合了php数据类型相关内容,阅读专题下面的文章了解更多详细内容。

222

2025.10.31

c语言中null和NULL的区别
c语言中null和NULL的区别

c语言中null和NULL的区别是:null是C语言中的一个宏定义,通常用来表示一个空指针,可以用于初始化指针变量,或者在条件语句中判断指针是否为空;NULL是C语言中的一个预定义常量,通常用来表示一个空值,用于表示一个空的指针、空的指针数组或者空的结构体指针。

231

2023.09.22

java中null的用法
java中null的用法

在Java中,null表示一个引用类型的变量不指向任何对象。可以将null赋值给任何引用类型的变量,包括类、接口、数组、字符串等。想了解更多null的相关内容,可以阅读本专题下面的文章。

435

2024.03.01

sort排序函数用法
sort排序函数用法

sort排序函数的用法:1、对列表进行排序,默认情况下,sort函数按升序排序,因此最终输出的结果是按从小到大的顺序排列的;2、对元组进行排序,默认情况下,sort函数按元素的大小进行排序,因此最终输出的结果是按从小到大的顺序排列的;3、对字典进行排序,由于字典是无序的,因此排序后的结果仍然是原来的字典,使用一个lambda表达式作为key参数的值,用于指定排序的依据。

385

2023.09.04

mysql标识符无效错误怎么解决
mysql标识符无效错误怎么解决

mysql标识符无效错误的解决办法:1、检查标识符是否被其他表或数据库使用;2、检查标识符是否包含特殊字符;3、使用引号包裹标识符;4、使用反引号包裹标识符;5、检查MySQL的配置文件等等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

180

2023.12.04

Python标识符有哪些
Python标识符有哪些

Python标识符有变量标识符、函数标识符、类标识符、模块标识符、下划线开头的标识符、双下划线开头、双下划线结尾的标识符、整型标识符、浮点型标识符等等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

277

2024.02.23

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

36

2026.01.14

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号