冒泡排序的核心思路是通过重复遍历列表,比较相邻元素并交换位置以达到有序,其名称源于大元素像气泡一样逐渐移动到末尾。1. 它通过外层循环控制遍历趟数,内层循环进行相邻元素的比较与交换;2. 每一趟遍历会将当前未排序部分的最大元素“冒泡”到正确位置;3. 可通过引入标志位优化,在列表已有序时提前终止循环;4. 进一步优化可记录最后一次交换位置,缩小后续比较范围;5. 时间复杂度为o(n²),适用于教学或小规模数据,不适用于大型或性能敏感的数据集。

在Python中实现冒泡排序,核心思路就是通过重复遍历列表,比较相邻元素并按需交换它们的位置,直到整个列表有序。这听起来有点笨拙,但它确实是理解排序算法基础逻辑的绝佳起点。本质上,我们就是在列表里“推”着那些“大”的元素慢慢浮到它们该去的位置,像水里的气泡一样。

实现冒泡排序,我们需要一个外层循环来控制总的遍历趟数,以及一个内层循环来完成每趟的比较和交换。
最基础的冒泡排序实现大致是这样:
立即学习“Python免费学习笔记(深入)”;

def bubble_sort_basic(arr):
n = len(arr)
# 外层循环控制趟数,每一趟会将一个最大的元素“冒泡”到末尾
for i in range(n - 1):
# 内层循环进行比较和交换
# 每次内层循环结束后,最大的未排序元素会到达正确位置
# 因此,后面的元素就不需要再比较了,所以是 n - 1 - i
for j in range(n - 1 - i):
if arr[j] > arr[j + 1]:
# 交换元素
arr[j], arr[j + 1] = arr[j + 1], arr[j]
return arr
# 示例
my_list = [64, 34, 25, 12, 22, 11, 90]
print(f"原始列表: {my_list}")
sorted_list = bubble_sort_basic(my_list.copy()) # 使用copy避免修改原列表
print(f"排序后列表 (基础版): {sorted_list}")上面这个版本虽然能工作,但有个小问题:如果列表在某个时候已经完全有序了,它还是会傻傻地把所有循环都走完。为了避免这种不必要的计算,我们可以加一个优化:引入一个标志位,如果在某次内循环中没有发生任何交换,那就说明列表已经有序了,可以直接提前结束。
优化后的冒泡排序:

def bubble_sort_optimized(arr):
n = len(arr)
# 标志位,用于判断在一趟遍历中是否发生了交换
swapped = False
for i in range(n - 1):
swapped = False # 每趟开始前重置标志位
for j in range(n - 1 - i):
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
swapped = True # 发生了交换
# 如果这一趟没有发生任何交换,说明列表已经有序,可以提前结束
if not swapped:
break
return arr
# 示例
my_list_opt = [64, 34, 25, 12, 22, 11, 90]
print(f"原始列表: {my_list_opt}")
sorted_list_opt = bubble_sort_optimized(my_list_opt.copy())
print(f"排序后列表 (优化版): {sorted_list_opt}")
# 提前结束的例子
already_sorted_list = [1, 2, 3, 4, 5]
print(f"原始列表 (已排序): {already_sorted_list}")
sorted_already_sorted = bubble_sort_optimized(already_sorted_list.copy())
print(f"排序后列表 (优化版,已排序): {sorted_already_sorted}")这个优化版在处理部分有序或完全有序的列表时,效率会高很多。
冒泡排序的工作原理其实非常直观。它通过重复地走访过要排序的数列,一次比较两个相邻的元素,如果它们的顺序不对(比如从小到大排序时,前一个比后一个大),就把它们交换过来。这个过程会持续进行,直到没有再需要交换的元素,也就是说,整个数列都排好序了。
想象一下水底的气泡,它们会一点点向上浮。在冒泡排序中,每次遍历,最大的(或最小的,取决于排序方向)未排序元素就像一个“气泡”,通过一系列相邻元素的交换,逐渐“浮”到列表的末尾(或开头)它应该在的位置。每次内层循环结束,都能保证当前未排序部分的最大元素已经“冒泡”到了正确的位置。因为这种“大”元素逐渐“浮”到末端的形象,所以它被形象地称为“冒泡排序”。
谈到性能,冒泡排序通常不是首选,因为它在大多数情况下的效率并不高。它的时间复杂度在最坏和平均情况下都是O(n²),这意味着当列表的元素数量n增加时,排序所需的时间会以n的平方级别增长。举个例子,如果列表长度从100增加到1000,排序时间可能增加100倍。空间复杂度方面,它只需要常数级别的额外空间,即O(1),因为它是在原地进行排序,不需要创建新的数组。
尽管有前面提到的优化,将最好情况下的时间复杂度降低到O(n)(当列表已经有序时),但对于随机或逆序的、规模较大的数据集,它的表现依然不尽人意。
因此,冒泡排序在以下场景下通常不适用:
那么,它在什么场景下可能还有点用呢?或许是教育目的,因为它简单易懂,是理解排序算法基础概念的好例子;或者在处理非常小的、几乎有序的列表时,它的代码量小,实现简单,可能比引入更复杂的算法更方便。但即便如此,Python内置的
sort()
sorted()
除了我们前面提到的那个通过
swapped
一个常见的思路是,我们知道在每一趟内层循环结束后,最大的元素已经“冒泡”到了它最终的位置。因此,下一趟循环时,我们不需要再比较已经排好序的末尾元素了。这就是为什么我们的代码中内层循环的范围是
range(n - 1 - i)
i
另一个稍微复杂一点的优化是记录最后一次交换发生的位置。因为在最后一次交换之后的所有元素,都是已经排好序的。所以,下一趟循环的比较范围可以进一步缩小到这个位置之前。
def bubble_sort_optimized_further(arr):
n = len(arr)
# last_swap_index 记录上一趟最后一次交换的位置
# 在这个位置之后的元素都已排序
last_swap_index = n - 1
while last_swap_index > 0:
current_swap_index = 0 # 记录当前趟最后一次交换的位置
for j in range(last_swap_index):
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
current_swap_index = j # 更新最后交换位置
last_swap_index = current_swap_index # 更新下一趟的比较范围
# 如果 current_swap_index 还是 0,说明没有发生交换,列表已排序
if current_swap_index == 0:
break
return arr
# 示例
my_list_further_opt = [64, 34, 25, 12, 22, 11, 90]
print(f"原始列表: {my_list_further_opt}")
sorted_list_further_opt = bubble_sort_optimized_further(my_list_further_opt.copy())
print(f"排序后列表 (进一步优化版): {sorted_list_further_opt}")这个版本在某些特定数据分布下,可能会减少一些不必要的比较,但它的核心逻辑依然是冒泡排序,复杂度等级并没有改变。还有一些变体,比如双向冒泡排序(也叫鸡尾酒排序),它会在每一趟中从两端向中间进行冒泡,理论上可以减少一些循环次数,但本质上还是O(n²)。这些优化更多是算法实现上的精进,而非颠覆性的性能提升。
以上就是Python如何实现冒泡排序?经典算法详解的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号