0

0

Python如何制作地理空间热力图?geopandas展示

爱谁谁

爱谁谁

发布时间:2025-08-14 16:51:02

|

252人浏览过

|

来源于php中文网

原创

首先使用geopandas读取地理数据并提取经纬度,然后通过scipy进行高斯核密度估计,接着用matplotlib绘制热力图;对于大型数据集,可采用分块处理、空间索引、数据降采样或使用空间数据库来避免内存溢出;可通过设置cmap参数自定义颜色,alpha参数调整透明度,levels参数控制颜色分级,colorbar增强可读性;除高斯核密度估计外,还可采用简单计数、反距离权重、克里金法或六边形分箱方法生成热力图,其中六边形分箱使用plt.hexbin实现,最终应根据数据特征和分析目标选择合适方法以获得最佳可视化效果。

Python如何制作地理空间热力图?geopandas展示

Python制作地理空间热力图,简单来说,就是利用geopandas处理地理数据,然后用一些可视化工具(比如matplotlib,或者更高级的folium)把它画出来。关键在于数据的准备和热力图算法的选择。

解决方案:

首先,你需要安装必要的库:

geopandas
,
matplotlib
,
scipy
(用于核密度估计)。

立即学习Python免费学习笔记(深入)”;

pip install geopandas matplotlib scipy

然后,读取你的地理数据。假设你有一个包含经纬度信息的GeoJSON文件:

import geopandas as gpd
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
import numpy as np

# 读取GeoJSON文件
gdf = gpd.read_file("your_data.geojson")

# 确保你的GeoDataFrame包含经纬度列,或者你可以从geometry列中提取
# 假设geometry是Point类型
gdf['longitude'] = gdf.geometry.x
gdf['latitude'] = gdf.geometry.y

# 创建经纬度数组
x = gdf['longitude']
y = gdf['latitude']

# 使用高斯核密度估计
kde = gaussian_kde([x, y])

# 创建一个网格来评估密度
xmin, xmax = x.min(), x.max()
ymin, ymax = y.min(), y.max()
xx, yy = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
positions = np.vstack([xx.ravel(), yy.ravel()])
f = np.reshape(kde(positions).T, xx.shape)

# 绘制热力图
fig, ax = plt.subplots(1, 1)
contour = ax.contourf(xx, yy, f, cmap='viridis') # 你可以尝试其他的colormap

# 添加颜色条
cbar = fig.colorbar(contour)

# 设置标题和标签
ax.set_title('地理空间热力图')
ax.set_xlabel('经度')
ax.set_ylabel('纬度')

# 显示地图背景 (可选,需要你有一个底图)
# ctx.add_basemap(ax, crrs='EPSG:4326', source=ctx.providers.Stamen.TonerLite)

plt.show()

这段代码使用了高斯核密度估计(Gaussian Kernel Density Estimation)来计算热力值。你需要根据你的数据调整网格密度(

100j
)。
cmap
参数可以控制热力图的颜色。

如何处理大型地理数据集,避免内存溢出?

对于大型数据集,直接加载到内存可能会导致问题。可以考虑以下策略:

  1. 分块处理 (Chunking): 使用

    geopandas.read_file
    chunksize
    参数,分批读取数据,处理完一块再处理下一块。 你需要累积每一块的结果,最后合并。

  2. 空间索引 (Spatial Indexing): 使用

    geopandas
    的空间索引功能,只加载你感兴趣的区域的数据。这需要你事先知道你关注的区域范围。 Rtree可以帮助你创建空间索引。

  3. 数据降采样 (Downsampling): 如果精度要求不高,可以对数据进行降采样,减少数据量。

  4. 使用数据库: 将数据存储在空间数据库(如PostGIS)中,利用数据库的查询能力来过滤和处理数据,然后将结果用于生成热力图。

    Ink For All
    Ink For All

    AI写作和营销助手,精心设计的 UI

    下载

如何自定义热力图的颜色和透明度,使其更具可读性?

matplotlib
提供了丰富的颜色映射和透明度控制选项。

  1. 颜色映射 (Colormap):

    contourf
    函数的
    cmap
    参数可以指定颜色映射。
    matplotlib
    内置了很多colormap,比如
    viridis
    ,
    plasma
    ,
    inferno
    ,
    magma
    ,
    coolwarm
    等。你也可以自定义colormap。

    contour = ax.contourf(xx, yy, f, cmap='coolwarm')
  2. 透明度 (Alpha):

    contourf
    函数的
    alpha
    参数可以控制透明度。
    alpha
    的值介于0(完全透明)和1(完全不透明)之间。

    contour = ax.contourf(xx, yy, f, cmap='viridis', alpha=0.7)
  3. 颜色条 (Colorbar): 你可以自定义颜色条的标签和刻度,使其更易于理解。

    cbar = fig.colorbar(contour)
    cbar.set_label('密度') # 设置颜色条标签
  4. 自定义颜色等级 (Levels): 通过设置

    levels
    参数,可以自定义热力图的颜色分级,突出显示特定密度范围。

    levels = np.linspace(f.min(), f.max(), 10) # 创建10个等级
    contour = ax.contourf(xx, yy, f, cmap='viridis', levels=levels)

除了高斯核密度估计,还有哪些方法可以生成地理空间热力图?

除了高斯核密度估计,还有一些其他方法可以生成地理空间热力图:

  1. 简单计数 (Simple Counting): 将地图划分为网格,统计每个网格内的点数量。 这是最简单的方法,但结果对网格大小很敏感。

  2. 反距离权重 (Inverse Distance Weighting, IDW): 根据距离的倒数对周围的点进行加权平均。 IDW方法对参数(距离衰减系数)比较敏感。

  3. 克里金法 (Kriging): 一种地统计学方法,利用空间自相关性进行插值。 克里金法需要对数据进行变异函数分析,比较复杂。

  4. 六边形分箱 (Hexbin): 使用六边形网格代替矩形网格,可以减少网格效应。

    matplotlib
    提供了
    hexbin
    函数。

    plt.hexbin(x, y, C=None, gridsize=50, cmap='viridis')
    plt.colorbar()
    plt.show()

选择哪种方法取决于你的数据和分析目标。高斯核密度估计通常是一个不错的起点,因为它平滑了数据,减少了噪声。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

742

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

756

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1259

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

15

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.9万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号