首页 > 后端开发 > Golang > 正文

Go并发编程中的死锁问题及解决方案:基于观察者模式的实践

花韻仙語
发布: 2025-08-15 20:10:22
原创
358人浏览过

go并发编程中的死锁问题及解决方案:基于观察者模式的实践

本文针对Go语言并发编程中常见的死锁问题,以观察者模式的实现为例,深入剖析了死锁产生的原因,并提供了两种有效的解决方案:使用带缓冲的channel以及利用sync.WaitGroup进行goroutine同步。通过本文的学习,开发者可以更好地理解Go语言的并发机制,避免死锁,编写出更健壮的并发程序。

在Go语言中,并发编程是其强大功能之一,但同时也带来了诸如死锁等问题。本文将通过一个基于观察者模式的示例,深入探讨Go语言中死锁的产生原因以及相应的解决方案。

死锁示例:观察者模式的并发实现

以下代码尝试实现一个简单的观察者模式,其中Publisher负责发布消息,Subscriber负责监听消息。

package main

import (
    "fmt"
)

type Publisher struct {
    listeners []chan int
}

type Subscriber struct {
    Channel chan int
    Name   string
}

func (p *Publisher) Sub(c chan int) {
    p.listeners = append(p.listeners, c)
}

func (p *Publisher) Pub(m int, quit chan int) {
    for _, c := range p.listeners {
        c <- m
    }
    quit <- 0
}

func (s *Subscriber) ListenOnChannel() {
    data := <-s.Channel
    fmt.Printf("Name: %v; Data: %v\n", s.Name, data)
}

func main() {
    quit := make(chan int)
    p := &Publisher{}
    subscribers := []*Subscriber{
        {Channel: make(chan int), Name: "1"},
        {Channel: make(chan int), Name: "2"},
        {Channel: make(chan int), Name: "3"},
    }
    for _, v := range subscribers {
        p.Sub(v.Channel)
        go v.ListenOnChannel()
    }

    p.Pub(2, quit)

    <-quit
}
登录后复制

这段代码在运行时会产生死锁错误:"fatal error: all goroutines are asleep - deadlock!"。

死锁原因分析

死锁的根本原因在于quit channel的使用方式。quit channel的缓冲区大小为0,这意味着发送和接收操作必须同时进行。在Pub方法中,首先向所有listener的channel发送消息,然后尝试向quit channel发送消息。然而,main函数中的<-quit操作会阻塞,直到Pub方法向quit channel发送消息。

问题在于,Pub方法在同一个goroutine中发送和接收quit channel,导致互相等待,从而形成死锁。

千帆大模型平台
千帆大模型平台

面向企业开发者的一站式大模型开发及服务运行平台

千帆大模型平台 0
查看详情 千帆大模型平台

解决方案一:在Subscriber中发送quit信号

一种解决方案是在每个Subscriber的goroutine中发送quit信号,并在main函数中接收所有quit信号。

package main

import (
    "fmt"
)

type Publisher struct {
    listeners []chan int
}

type Subscriber struct {
    Channel chan int
    Name   string
}

func (p *Publisher) Sub(c chan int) {
    p.listeners = append(p.listeners, c)
}

func (p *Publisher) Pub(m int) {
    for _, c := range p.listeners {
        c <- m
    }
}

func (s *Subscriber) ListenOnChannel(quit chan int) {
    data := <-s.Channel
    fmt.Printf("Name: %v; Data: %v\n", s.Name, data)
    quit <- 0 // Subscriber发送quit信号
}

func main() {
    quit := make(chan int)
    p := &Publisher{}
    subscribers := []*Subscriber{
        {Channel: make(chan int), Name: "1"},
        {Channel: make(chan int), Name: "2"},
        {Channel: make(chan int), Name: "3"},
    }
    for _, v := range subscribers {
        p.Sub(v.Channel)
        go v.ListenOnChannel(quit) // 传递quit channel
    }

    p.Pub(2)

    // 接收所有Subscriber的quit信号
    for i := 0; i < len(subscribers); i++ {
        <-quit
    }
}
登录后复制

在这个修改后的版本中,ListenOnChannel方法接收quit channel,并在完成打印后向其发送信号。main函数循环接收所有Subscriber的quit信号,确保所有goroutine都已完成。

解决方案二:使用sync.WaitGroup

另一种更优雅的解决方案是使用sync.WaitGroup来同步goroutine。

package main

import (
    "fmt"
    "sync"
)

type Publisher struct {
    listeners []chan int
}

type Subscriber struct {
    Channel chan int
    Name   string
}

func (p *Publisher) Sub(c chan int) {
    p.listeners = append(p.listeners, c)
}

func (p *Publisher) Pub(m int) {
    for _, c := range p.listeners {
        c <- m
    }
}

func (s *Subscriber) ListenOnChannel(wg *sync.WaitGroup) {
    defer wg.Done() // goroutine完成时调用Done
    data := <-s.Channel
    fmt.Printf("Name: %v; Data: %v\n", s.Name, data)
}

func main() {
    var wg sync.WaitGroup
    p := &Publisher{}
    subscribers := []*Subscriber{
        {Channel: make(chan int), Name: "1"},
        {Channel: make(chan int), Name: "2"},
        {Channel: make(chan int), Name: "3"},
    }
    for _, v := range subscribers {
        p.Sub(v.Channel)
        wg.Add(1)                // 增加WaitGroup计数器
        go v.ListenOnChannel(&wg) // 传递WaitGroup
    }

    p.Pub(2)

    wg.Wait() // 等待所有goroutine完成
}
登录后复制

在这个版本中,sync.WaitGroup用于等待所有Subscriber的goroutine完成。wg.Add(1)在每个goroutine启动前增加计数器,defer wg.Done()在goroutine完成时减少计数器,wg.Wait()会阻塞直到计数器变为0。

注意事项与总结

  • 避免过度依赖channel的缓冲大小: 增大channel的缓冲大小虽然可以缓解某些并发问题,但并不能真正解决潜在的逻辑错误。应该尽可能地使用无缓冲channel,以便更早地发现并发问题。
  • 合理使用sync.WaitGroup: sync.WaitGroup是同步goroutine的强大工具,可以有效地避免死锁和竞态条件。
  • 理解Go的并发模型: 深入理解Go的并发模型是编写健壮并发程序的关键。

通过以上示例和分析,我们了解了Go语言中死锁的产生原因以及两种有效的解决方案。在实际开发中,应该根据具体情况选择合适的解决方案,并时刻注意避免潜在的并发问题。

以上就是Go并发编程中的死锁问题及解决方案:基于观察者模式的实践的详细内容,更多请关注php中文网其它相关文章!

编程速学教程(入门课程)
编程速学教程(入门课程)

编程怎么学习?编程怎么入门?编程在哪学?编程怎么学才快?不用担心,这里为大家提供了编程速学教程(入门课程),有需要的小伙伴保存下载就能学习啦!

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号