sorted() 函数通过 key 参数实现自定义排序规则,1. 基本用法支持升序和 reverse=true 实现降序;2. key 参数传入函数以决定排序依据,如 len 或 lambda 表达式;3. 复杂数据可用 lambda 获取字典键或对象属性;4. operator 模块的 itemgetter 和 attrgetter 提供更高效、清晰的替代方案;5. python 排序是稳定的,相等元素保持原有顺序;6. sorted() 返回新列表不修改原数据,list.sort() 则原地修改。该机制结合 timsort 算法保证 o(n log n) 性能,适用于大多数排序场景。

sorted()
key
Python 的
sorted()
# 最基础的用法
numbers = [3, 1, 4, 1, 5, 9, 2, 6]
sorted_numbers = sorted(numbers)
print(f"默认排序:{sorted_numbers}") # 输出:默认排序:[1, 1, 2, 3, 4, 5, 6, 9]
# 想要降序?加个 reverse=True 就行
sorted_numbers_desc = sorted(numbers, reverse=True)
print(f"降序排列:{sorted_numbers_desc}") # 输出:降序排列:[9, 6, 5, 4, 3, 2, 1, 1]真正的魔法在于
key
sorted()
立即学习“Python免费学习笔记(深入)”;
# 比如,我想根据字符串的长度来排序
words = ["apple", "banana", "cat", "dog", "elephant"]
sorted_by_length = sorted(words, key=len)
print(f"按长度排序:{sorted_by_length}") # 输出:按长度排序:['cat', 'dog', 'apple', 'banana', 'elephant']
# 再来一个,列表里是元组,我想根据元组的第二个元素来排序
data = [("apple", 5), ("banana", 2), ("cherry", 8), ("date", 1)]
# 这里我们用 lambda 表达式定义一个匿名函数,它接受一个元组 x,返回 x[1]
sorted_by_second_element = sorted(data, key=lambda x: x[1])
print(f"按元组第二个元素排序:{sorted_by_second_element}") # 输出:按元组第二个元素排序:[('date', 1), ('banana', 2), ('apple', 5), ('cherry', 8)]key
当数据结构变得复杂,比如列表里装着字典,或者自定义的对象时,
key
我们经常会遇到这样的场景:有一堆用户数据,每个用户都是一个字典,我们想按年龄排序。
users = [
{"name": "Alice", "age": 30},
{"name": "Bob", "age": 25},
{"name": "Charlie", "age": 35},
{"name": "David", "age": 25}
]
# 想要按年龄排序,年龄相同再按名字排序(这个后面会讲到)
# 这里用 lambda x: x['age'] 来告诉 sorted 函数,去拿每个字典里的 'age' 值来比
sorted_users_by_age = sorted(users, key=lambda user: user['age'])
print(f"按年龄排序的用户:{sorted_users_by_age}")
# 输出:按年龄排序的用户:[{'name': 'Bob', 'age': 25}, {'name': 'David', 'age': 25}, {'name': 'Alice', 'age': 30}, {'name': 'Charlie', 'age': 35}]这很直接,对吧?但有时候,我们的数据是自定义的类实例,比如一个
Product
class Product:
def __init__(self, name, price, stock):
self.name = name
self.price = price
self.stock = stock
def __repr__(self): # 为了方便打印,让对象看起来更直观
return f"Product(name='{self.name}', price={self.price}, stock={self.stock})"
products = [
Product("Laptop", 1200, 50),
Product("Mouse", 25, 200),
Product("Keyboard", 75, 100),
Product("Monitor", 300, 30)
]
# 按价格排序
# lambda product: product.price 告诉 sorted 函数,去拿每个 Product 对象的 price 属性来比
sorted_products_by_price = sorted(products, key=lambda p: p.price)
print(f"按价格排序的商品:{sorted_products_by_price}")
# 输出:按价格排序的商品:[Product(name='Mouse', price=25, stock=200), Product(name='Keyboard', price=75, stock=100), Product(name='Monitor', price=300, stock=30), Product(name='Laptop', price=1200, stock=50)]通过
lambda
key
lambda
operator
虽然
lambda
operator
operator.itemgetter
from operator import itemgetter
users = [
{"name": "Alice", "age": 30},
{"name": "Bob", "age": 25},
{"name": "Charlie", "age": 35},
{"name": "David", "age": 25}
]
# 用 itemgetter 替代 lambda 来按年龄排序
# itemgetter('age') 会创建一个函数,这个函数接收一个字典,然后返回字典里 'age' 键对应的值
sorted_users_by_age_op = sorted(users, key=itemgetter('age'))
print(f"用 itemgetter 按年龄排序的用户:{sorted_users_by_age_op}")
# itemgetter 还能用于多级排序,传入多个键名或索引,它会返回一个元组
# 先按年龄升序,年龄相同则按名字升序
sorted_users_multi_level = sorted(users, key=itemgetter('age', 'name'))
print(f"多级排序(年龄再姓名):{sorted_users_multi_level}")
# 输出:多级排序(年龄再姓名):[{'name': 'Bob', 'age': 25}, {'name': 'David', 'age': 25}, {'name': 'Alice', 'age': 30}, {'name': 'Charlie', 'age': 35}]
# 注意到 Bob 和 David 的顺序变了,因为 David 的 D 在 Bob 的 B 后面operator.attrgetter
from operator import attrgetter
# 沿用之前的 Product 类和 products 列表
# 按价格排序
sorted_products_by_price_op = sorted(products, key=attrgetter('price'))
print(f"用 attrgetter 按价格排序的商品:{sorted_products_by_price_op}")
# 多级排序:先按库存降序,库存相同再按价格升序
# 注意这里我们不能直接在 attrgetter 里指定降序,降序要靠外层的 reverse=True
# 但如果某个键需要降序,另一个需要升序,就需要更复杂的 key 函数或者分步排序了
# 这里先按库存,再按价格
sorted_products_multi_level = sorted(products, key=attrgetter('stock', 'price'), reverse=True) # 整体降序
print(f"多级排序(库存降序,再价格降序):{sorted_products_multi_level}")
# 如果想要库存降序,价格升序,就需要稍微调整 key 函数的返回:
# sorted_products_mixed_order = sorted(products, key=lambda p: (-p.stock, p.price))
# 通过对降序的数值取负,可以实现混合排序使用
itemgetter
attrgetter
lambda
这是一个很重要的特性:Python 的
sorted()
sort()
举个例子:
data_with_duplicates = [("apple", 5), ("banana", 2), ("cherry", 8), ("date", 1), ("grape", 5)]
# 按第二个元素排序
# 'apple' 和 'grape' 的第二个元素都是 5
sorted_stable = sorted(data_with_duplicates, key=lambda x: x[1])
print(f"稳定排序示例:{sorted_stable}")
# 输出:稳定排序示例:[('date', 1), ('banana', 2), ('apple', 5), ('grape', 5), ('cherry', 8)]
# 注意,('apple', 5) 在 ('grape', 5) 之前,排序后它们依然保持了这个相对顺序。这种稳定性在多级排序或者当你关心原始顺序时非常有用。比如,你先按年龄排序,然后又想对年龄相同的人按名字排序,如果排序不稳定,你之前年龄排序的“局部顺序”可能就被打乱了。
至于性能考量,
sorted()
需要注意的一点是,
key
key
key
最后,我们简单提一下
sorted()
list.sort()
sorted(iterable)
list.sort()
None
list.sort()
key
reverse
以上就是Python怎样实现数据排序?sorted函数进阶的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号