0

0

Pandas DataFrame 子框架赋值详解:避免索引错位问题

花韻仙語

花韻仙語

发布时间:2025-08-16 15:24:02

|

637人浏览过

|

来源于php中文网

原创

pandas dataframe 子框架赋值详解:避免索引错位问题

本文旨在解决 Pandas DataFrame 子框架赋值时出现的索引错位问题。通过示例代码,详细解释了 Pandas 在赋值操作中的索引对齐机制,并提供了使用 to_numpy() 方法避免错位的有效解决方案。学习本文,你将能够更准确地控制 DataFrame 的赋值行为,避免数据错误,提升数据处理的效率和准确性。

Pandas DataFrame 子框架赋值中的索引对齐

在使用 Pandas 进行数据处理时,DataFrame 的子框架赋值是一个常见的操作。然而,如果不理解 Pandas 的索引对齐机制,很容易导致赋值结果与预期不符,出现数据错位甚至 NaN 值。

Pandas 在进行赋值操作时,会默认将赋值源(右侧)的索引和列名与目标(左侧)的索引和列名进行对齐。如果索引或列名不匹配,Pandas 会尝试进行匹配,如果无法匹配,则会引入 NaN 值。

以下面的代码为例进行说明:

import pandas as pd

df1 = pd.DataFrame({'1':[1,2,3,4,5,6], '2':[10,20,30,40,50,60],'3': [100,200,300,400,500,600]})
df2 = pd.DataFrame({'1':[22,22], '2':[22,22], '3':[22,22]})
df1.loc[[0,1],['2','3']] = df2.loc[[0,1],['1','2']]

print(df1)

运行结果如下:

     1     2      3
0  1.0  22.0    NaN
1  2.0  22.0    NaN
2  3.0  30.0  300.0
3  4.0  40.0  400.0
4  5.0  50.0  500.0
5  6.0  60.0  600.0

可以看到,df1 的 '2' 和 '3' 列的前两行被赋值为 22.0 和 NaN,而不是预期的 22.0 和 22.0。这是因为 Pandas 在赋值时,尝试将 df2.loc[[0,1],['1','2']] 的 '1' 列的值赋给 df1 的 '2' 列,将 df2.loc[[0,1],['2']] 的值赋给 df1 的 '3' 列。由于 df2 中没有 '3' 列,因此 df1 的 '3' 列被赋值为 NaN。

解决方案:使用 to_numpy() 避免索引对齐

为了避免索引对齐带来的问题,可以使用 to_numpy() 方法将 DataFrame 转换为 NumPy 数组,从而绕过 Pandas 的索引对齐机制。

Open Voice OS
Open Voice OS

OpenVoiceOS是一个社区驱动的开源语音AI平台

下载

修改后的代码如下:

import pandas as pd

df1 = pd.DataFrame({'1':[1,2,3,4,5,6], '2':[10,20,30,40,50,60],'3': [100,200,300,400,500,600]})
df2 = pd.DataFrame({'1':[22,22], '2':[22,22], '3':[22,22]})
df1.loc[[0,1], ['2','3']] = df2.loc[[0,1], ['1','2']].to_numpy()

print(df1)

运行结果如下:

   1   2    3
0  1  22   22
1  2  22   22
2  3  30  300
3  4  40  400
4  5  50  500
5  6  60  600

通过使用 to_numpy() 方法,成功地将 df2 的值赋给了 df1 的指定区域,避免了索引对齐带来的问题。

总结

在 Pandas DataFrame 子框架赋值时,需要注意 Pandas 的索引对齐机制。如果需要直接赋值,而不进行索引对齐,可以使用 to_numpy() 方法将 DataFrame 转换为 NumPy 数组。

注意事项:

  • 使用 to_numpy() 方法会丢失 DataFrame 的索引和列名信息。
  • 在进行赋值操作时,确保赋值源和目标的形状匹配,否则会引发错误。
  • 在复杂的 DataFrame 操作中,建议仔细检查索引和列名,确保赋值操作的正确性。

掌握这些技巧,可以帮助你更加灵活和高效地使用 Pandas 进行数据处理。

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

51

2025.12.04

Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

6

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

34

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

47

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

8

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

65

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

35

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

75

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

20

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号