
本文旨在帮助开发者理解和解决 Go 并发程序中常见的死锁问题。通过分析一个包含三个 Goroutine 相互通信的示例程序,我们将深入探讨死锁产生的原因,并提供有效的调试和修复策略,包括使用 runtime.Gosched() 和缓冲 Channel 来避免死锁,同时强调并发程序设计的复杂性和潜在的非确定性行为。
在 Go 语言中,死锁通常发生在多个 Goroutine 试图通过 Channel 进行通信时,由于某种原因,它们都在等待对方释放资源或发送/接收数据,从而导致所有 Goroutine 都被阻塞,程序无法继续执行。Go 运行时会检测到这种状态,并抛出 "fatal error: all goroutines are asleep - deadlock!" 错误。
死锁的常见原因包括:
下面是一个可能导致死锁的示例代码,它包含三个 Goroutine,它们通过 Channel 互相发送整数:
package main
import (
"fmt"
"math/rand"
"runtime"
)
func Routine1(command12 chan int, response12 chan int, command13 chan int, response13 chan int) {
z12 := 200
z13 := 200
m12 := false
m13 := false
y := 0
for i := 0; i < 20; i++ {
y = rand.Intn(100)
if y == 0 {
fmt.Println(z12, " z12 STATE SAVED")
fmt.Println(z13, " z13 STATE SAVED")
y = 0
command12 <- y
command13 <- y
for m12 != true || m13 != true {
select {
case cmd1 := <-response12:
{
z12 = cmd1
if z12 != 0 {
fmt.Println(z12, " z12 Channel Saving.... ")
y = rand.Intn(100)
command12 <- y
}
if z12 == 0 {
m12 = true
fmt.Println(" z12 Channel Saving Stopped ")
}
}
case cmd2 := <-response13:
{
z13 = cmd2
if z13 != 0 {
fmt.Println(z13, " z13 Channel Saving.... ")
y = rand.Intn(100)
command13 <- y
}
if z13 == 0 {
m13 = true
fmt.Println(" z13 Channel Saving Stopped ")
}
}
}
}
m12 = false
m13 = false
}
if y != 0 {
if y%2 == 0 {
command12 <- y
}
if y%2 != 0 {
command13 <- y
}
select {
case cmd1 := <-response12:
{
z12 = cmd1
fmt.Println(z12, " z12")
}
case cmd2 := <-response13:
{
z13 = cmd2
fmt.Println(z13, " z13")
}
}
}
}
close(command12)
close(command13)
}
func Routine2(command12 chan int, response12 chan int, command23 chan int, response23 chan int) {
z21 := 200
z23 := 200
m21 := false
m23 := false
for i := 0; i < 20; i++ {
select {
case x, open := <-command12:
{
if !open {
return
}
if x != 0 && m23 != true {
z21 = x
fmt.Println(z21, " z21")
}
if x != 0 && m23 == true {
z21 = x
fmt.Println(z21, " z21 Channel Saving ")
}
if x == 0 {
m21 = true
if m21 == true && m23 == true {
fmt.Println(" z21 and z23 Channel Saving Stopped ")
m23 = false
m21 = false
}
if m21 == true && m23 != true {
z21 = x
fmt.Println(z21, " z21 Channel Saved ")
}
}
}
case x, open := <-response23:
{
if !open {
return
}
if x != 0 && m21 != true {
z23 = x
fmt.Println(z23, " z21")
}
if x != 0 && m21 == true {
z23 = x
fmt.Println(z23, " z23 Channel Saving ")
}
if x == 0 {
m23 = true
if m21 == true && m23 == true {
fmt.Println(" z23 Channel Saving Stopped ")
m23 = false
m21 = false
}
if m23 == true && m21 != true {
z23 = x
fmt.Println(z23, " z23 Channel Saved ")
}
}
}
}
if m23 == false && m21 == false {
y := rand.Intn(100)
if y%2 == 0 {
if y == 0 {
y = 10
response12 <- y
}
}
if y%2 != 0 {
if y == 0 {
y = 10
response23 <- y
}
}
}
if m23 == true && m21 != true {
y := rand.Intn(100)
response12 <- y
}
if m23 != true && m21 == true {
y := rand.Intn(100)
command23 <- y
}
}
close(response12)
close(command23)
}
func Routine3(command13 chan int, response13 chan int, command23 chan int, response23 chan int) {
z31 := 200
z32 := 200
m31 := false
m32 := false
for i := 0; i < 20; i++ {
select {
case x, open := <-command13:
{
if !open {
return
}
if x != 0 && m32 != true {
z31 = x
fmt.Println(z31, " z21")
}
if x != 0 && m32 == true {
z31 = x
fmt.Println(z31, " z31 Channel Saving ")
}
if x == 0 {
m31 = true
if m31 == true && m32 == true {
fmt.Println(" z21 Channel Saving Stopped ")
m31 = false
m32 = false
}
if m31 == true && m32 != true {
z31 = x
fmt.Println(z31, " z31 Channel Saved ")
}
}
}
case x, open := <-command23:
{
if !open {
return
}
if x != 0 && m31 != true {
z32 = x
fmt.Println(z32, " z32")
}
if x != 0 && m31 == true {
z32 = x
fmt.Println(z32, " z32 Channel Saving ")
}
if x == 0 {
m32 = true
if m31 == true && m32 == true {
fmt.Println(" z32 Channel Saving Stopped ")
m31 = false
m32 = false
}
if m32 == true && m31 != true {
z32 = x
fmt.Println(z32, " z32 Channel Saved ")
}
}
}
}
if m31 == false && m32 == false {
y := rand.Intn(100)
if y%2 == 0 {
response13 <- y
}
if y%2 != 0 {
response23 <- y
}
}
if m31 == true && m32 != true {
response13 <- y
}
if m31 != true && m32 == true {
response23 <- y
}
}
close(response13)
close(response23)
}
func main() {
command12 := make(chan int)
response12 := make(chan int)
command13 := make(chan int)
response13 := make(chan int)
command23 := make(chan int)
response23 := make(chan int)
go Routine1(command12, response12, command13, response13)
go Routine2(command12, response12, command23, response23)
Routine3(command13, response13, command23, response23)
}这段代码创建了三个 Goroutine,它们通过六个 Channel 进行通信。Routine1 是发起者,它可以发送 0 值来请求其他 Goroutine 保存状态。每个 Goroutine 都有一个内部状态,并通过 Channel 交换数据。
死锁分析:
这段代码的复杂性使得静态分析变得困难,但我们可以推断出潜在的死锁点:
使用 runtime.Gosched():
runtime.Gosched() 函数可以让当前 Goroutine 放弃 CPU 的使用权,让其他 Goroutine 有机会运行。在 select 语句中添加 default 分支并调用 runtime.Gosched() 可以避免 Goroutine 一直占用 CPU,从而降低死锁的风险。
select {
case cmd1 := <-response12:
// ...
case cmd2 := <-response13:
// ...
default:
runtime.Gosched()
}使用缓冲 Channel:
将无缓冲 Channel 替换为缓冲 Channel 可以缓解死锁问题。缓冲 Channel 允许发送方在 Channel 未满时发送数据,而无需等待接收方准备好。这可以避免发送方因为等待接收方而被阻塞。
command12 := make(chan int, 10) // 创建一个容量为 10 的缓冲 Channel
注意: 缓冲 Channel 只是缓解死锁,并不能完全避免死锁。如果缓冲 Channel 满了,发送方仍然会被阻塞。
代码重构:
最根本的解决方案是重新设计并发程序,避免复杂的 Channel 交互和循环等待。可以考虑使用更高级的并发模式,例如 sync.WaitGroup、context 等,或者使用更简单的通信方式,例如共享内存和锁。
下面是修改后的代码,使用了 runtime.Gosched() 和缓冲 Channel:
package main
import (
"fmt"
"math/rand"
"runtime"
)
const bufferSize = 4 // 缓冲大小
func Routine1(command12 chan int, response12 chan int, command13 chan int, response13 chan int) {
z12 := 200
z13 := 200
m12 := false
m13 := false
y := 0
for i := 0; i < 20; i++ {
y = rand.Intn(100)
if y == 0 {
fmt.Println(z12, " z12 STATE SAVED")
fmt.Println(z13, " z13 STATE SAVED")
y = 0
command12 <- y
command13 <- y
for m12 != true || m13 != true {
select {
case cmd1 := <-response12:
{
z12 = cmd1
if z12 != 0 {
fmt.Println(z12, " z12 Channel Saving.... ")
y = rand.Intn(100)
command12 <- y
}
if z12 == 0 {
m12 = true
fmt.Println(" z12 Channel Saving Stopped ")
}
}
case cmd2 := <-response13:
{
z13 = cmd2
if z13 != 0 {
fmt.Println(z13, " z13 Channel Saving.... ")
y = rand.Intn(100)
command13 <- y
}
if z13 == 0 {
m13 = true
fmt.Println(" z13 Channel Saving Stopped ")
}
}
default:
runtime.Gosched()
}
}
m12 = false
m13 = false
}
if y != 0 {
if y%2 == 0 {
command12 <- y
}
if y%2 != 0 {
command13 <- y
}
select {
case cmd1 := <-response12:
{
z12 = cmd1
fmt.Println(z12, " z12")
}
case cmd2 := <-response13:
{
z13 = cmd2
fmt.Println(z13, " z13")
}
default:
runtime.Gosched()
}
}
}
close(command12)
close(command13)
}
func Routine2(command12 chan int, response12 chan int, command23 chan int, response23 chan int) {
z21 := 200
z23 := 200
m21 := false
m23 := false
for i := 0; i < 20; i++ {
select {
case x, open := <-command12:
{
if !open {
return
}
if x != 0 && m23 != true {
z21 = x
fmt.Println(z21, " z21")
}
if x != 0 && m23 == true {
z21 = x
fmt.Println(z21, " z21 Channel Saving ")
}
if x == 0 {
m21 = true
if m21 == true && m23 == true {
fmt.Println(" z21 and z23 Channel Saving Stopped ")
m23 = false
m21 = false
}
if m21 == true && m23 != true {
z21 = x
fmt.Println(z21, " z21 Channel Saved ")
}
}
}
case x, open := <-response23:
{
if !open {
return
}
if x != 0 && m21 != true {
z23 = x
fmt.Println(z23, " z21")
}
if x != 0 && m21 == true {
z23 = x
fmt.Println(z23, " z23 Channel Saving ")
}
if x == 0 {
m23 = true
if m21 == true && m23 == true {
fmt.Println(" z23 Channel Saving Stopped ")
m23 = false
m21 = false
}
if m23 == true && m21 != true {
z23 = x
fmt.Println(z23, " z23 Channel Saved ")
}
}
}
default:
runtime.Gosched()
}
if m23 == false && m21 == false {
y := rand.Intn(100)
if y%2 == 0 {
if y == 0 {
y = 10
response12 <- y
}
}
if y%2 != 0 {
if y == 0 {
y = 10
response23 <- y
}
}
}
if m23 == true && m21 != true {
y := rand.Intn(100)
response12 <- y
}
if m23 != true && m21 == true {
y := rand.Intn(100)
command23 <- y
}
}
close(response12)
close(command23)
}
func Routine3(command13 chan int, response13 chan int, command23 chan int, response23 chan int) {
z31 := 200
z32 := 200
m31 := false
m32 := false
for i := 0; i < 20; i++ {
select {
case x, open := <-command13:
{
if !open {
return
}
if x != 0 && m32 != true {
z31 = x
fmt.Println(z31, " z21")
}
if x != 0 && m32 == true {
z31 = x
fmt.Println(z31, " z31 Channel Saving ")
}
if x == 0 {
m31 = true
if m31 == true && m32 == true {
fmt.Println(" z21 Channel Saving Stopped ")
m31 = false
m32 = false
}
if m31 == true && m32 != true {
z31 = x
fmt.Println(z31, " z31 Channel Saved ")
}
}
}
case x, open := <-command23:
{
if !open {
return
}
if x != 0 && m31 != true {
z32 = x
fmt.Println(z32, " z32")
}
if x != 0 && m31 == true {
z32 = x
fmt.Println(z32, " z32 Channel Saving ")
}
if x == 0 {
m32 = true
if m31 == true && m32 == true {
fmt.Println(" z32 Channel Saving Stopped ")
m31 = false
m32 = false
}
if m32 == true && m31 != true {
z32 = x
fmt.Println(z32, " z32 Channel Saved ")
}
}
}
default:
runtime.Gosched()
}
if m31 == false && m32 == false {
y := rand.Intn(100)
if y%2 == 0 {
response13 <- y
}
if y%2 != 0 {
response23 <- y
}
}
if m31 == true && m32 != true {
response13 <- y
}
if m31 != true && m32 == true {
response23 <- y
}
}
close(response13)
close(response23)
}
func main() {
command12 := make(chan int, bufferSize)
response12 := make(chan int, bufferSize)
command13 := make(chan int, bufferSize)
response13 := make(chan int, bufferSize)
command23 := make(chan int, bufferSize)
response23 := make(chan int, bufferSize)
go Routine1(command12, response12, command13, response13)
go Routine2(command12, response12, command23, response23)
Routine3(command13, response13, command23, response23)
// 为了防止 main 函数过早退出,可以等待一段时间
// 或者使用 sync.WaitGroup 等待所有 Goroutine 完成
runtime.Gosched()
runtime.Gosched()
runtime.Gosched()
runtime.Gosched()
runtime.Gosched()
}注意事项:
Go 并发程序中的死锁是一个常见的问题,但通过理解死锁的原因和掌握调试和修复策略,我们可以有效地避免死锁。在设计并发程序时,应该尽量避免复杂的 Channel 交互和循环等待,并使用更高级的并发模式来简化代码。同时,需要注意并发程序的非确定性行为,并进行充分的测试,以确保程序的正确性和稳定性。
以上就是Go 并发程序死锁排查与避免:深入剖析与实践的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号