0

0

什么是生成器函数?生成器的执行

小老鼠

小老鼠

发布时间:2025-08-18 13:24:02

|

379人浏览过

|

来源于php中文网

原创

生成器函数的核心区别在于使用yield实现可暂停、可恢复的执行,返回生成器对象而非直接返回结果,支持惰性求值和内存高效的数据处理。

什么是生成器函数?生成器的执行

生成器函数,简单来说,是一种特殊的函数,它不会一次性计算并返回所有结果,而是可以在执行过程中“暂停”并“产出”(yield)一个值,然后在需要时从上次暂停的地方继续执行。这种特性让它们在处理大量数据或构建无限序列时显得格外高效和优雅,因为它们实现了惰性求值——只在需要时才生成数据,极大节省了内存。

生成器函数的执行过程,与普通函数大相径庭。当你调用一个生成器函数时,它并不会立即执行函数体内的代码,而是返回一个“生成器对象”(一个迭代器)。这个对象才是真正驱动函数执行的关键。每次你对这个生成器对象调用

next()
方法(或者在
for...in
循环中隐式调用),生成器函数体内的代码才会开始执行,直到遇到
yield
语句。此时,函数会暂停执行,并把
yield
后面的值“产出”给调用者。当下次再次调用
next()
时,函数会从上次暂停的地方继续执行,直到遇到下一个
yield
,或者函数执行完毕。当函数体执行完毕,或者遇到
return
语句时,生成器会抛出
StopIteration
异常,标志着迭代的结束。

生成器函数与普通函数的核心区别在哪里?

谈到生成器函数和普通函数,最根本的区别在于它们的“生命周期”和“返回值”机制。普通函数执行时,一旦遇到

return
语句,它就会立即终止,并将
return
后面的值作为最终结果返回,函数内部的所有局部状态都会被销毁。这意味着,如果你需要一个序列,普通函数往往需要一次性计算出所有元素,然后将它们打包成一个列表或元组返回。

而生成器函数则完全不同。它的标志是使用了

yield
关键字而非
return
来“返回”值。一个生成器函数可以有多个
yield
语句,并且每次
yield
之后,函数的执行状态(包括局部变量的值、当前的执行位置)都会被保存下来。这就像给函数按下了“暂停键”,下次调用时能从上次暂停的地方继续。所以,生成器函数不是一次性返回一个集合,而是一个接一个地“产出”值。当你调用生成器函数时,它返回的是一个可迭代的生成器对象,而不是最终的结果。正是这种“可暂停、可恢复”的特性,赋予了生成器函数在内存管理和数据流处理上的独特优势。

# 普通函数示例
def create_list_of_numbers(n):
    print("开始生成列表...")
    numbers = []
    for i in range(n):
        numbers.append(i * 2)
    print("列表生成完毕。")
    return numbers

# 生成器函数示例
def generate_numbers(n):
    print("开始生成序列...")
    for i in range(n):
        yield i * 2  # 每次产出一个值
    print("序列生成完毕。")

# 观察执行差异
# my_list = create_list_of_numbers(5) # 会一次性打印 "开始生成列表..." 和 "列表生成完毕。"
# print(my_list)

# my_generator = generate_numbers(5) # 此时不会打印任何东西
# print(next(my_generator)) # 第一次 next(),打印 "开始生成序列...",产出 0
# print(next(my_generator)) # 第二次 next(),产出 2
# # ...直到所有值产出,才会打印 "序列生成完毕。"

从上面的例子可以直观感受到,普通函数是一次性完成任务,而生成器函数则是按需、分步完成。

如何理解生成器函数的惰性求值及其内存优势?

惰性求值,听起来有点高深,但其实它就是“按需计算”的意思。对于生成器函数来说,这意味着它不会预先计算好所有可能的结果,而是等到你真正需要某个值的时候,它才去计算并提供这个值。这与传统的列表或元组等数据结构形成了鲜明对比,后者通常需要在内存中一次性存储所有元素。

正是这种惰性求值的特性,带来了生成器函数最显著的优势——内存效率。想象一下,如果你要处理一个包含数百万甚至数十亿个元素的序列,比如读取一个巨大的日志文件,或者生成一个非常长的斐波那契数列。如果用普通函数一次性生成所有数据并存储在一个列表中,你的程序很可能因为内存不足而崩溃。

生成器函数则能巧妙地规避这个问题。它每次只在内存中维护当前正在处理的一个或少数几个元素的状态,一旦一个值被

yield
出去并被消费,它就不再需要被保留在内存中。这使得处理无限序列或超大数据集成为可能,因为无论序列有多长,内存占用始终保持在一个可控的、较低的水平。它就像一个高效的管道,数据流过,而不是堆积。这种“用完即弃”的策略,在处理大数据流时,是至关重要的。

魔法映像企业网站管理系统
魔法映像企业网站管理系统

技术上面应用了三层结构,AJAX框架,URL重写等基础的开发。并用了动软的代码生成器及数据访问类,加进了一些自己用到的小功能,算是整理了一些自己的操作类。系统设计上面说不出用什么模式,大体设计是后台分两级分类,设置好一级之后,再设置二级并选择栏目类型,如内容,列表,上传文件,新窗口等。这样就可以生成无限多个二级分类,也就是网站栏目。对于扩展性来说,如果有新的需求可以直接加一个栏目类型并新加功能操作

下载
# 假设我们要处理一个非常大的文件,每行都是一条记录
def process_large_file_generator(filepath):
    print(f"开始处理文件:{filepath} (惰性加载)")
    with open(filepath, 'r', encoding='utf-8') as f:
        for line in f:
            # 假设这里对每行进行一些复杂处理
            processed_line = line.strip().upper()
            yield processed_line
    print(f"文件处理完毕:{filepath}")

# 如果是普通函数,可能需要先读入所有行到内存
# def process_large_file_list(filepath):
#     print(f"开始处理文件:{filepath} (一次性加载)")
#     with open(filepath, 'r', encoding='utf-8') as f:
#         lines = [line.strip().upper() for line in f]
#     print(f"文件处理完毕:{filepath}")
#     return lines

# 使用生成器:
# for item in process_large_file_generator("very_large_log.txt"):
#     # 每次循环只处理一行,内存占用小
#     print(item)

通过这个例子,你可以看到,生成器函数在读取大文件时,无需将整个文件内容加载到内存中,而是逐行读取、逐行处理,这极大地降低了内存压力。

除了基本的迭代,生成器函数还有哪些高级用法或模式?

生成器函数远不止是简单的迭代器。Python为它们提供了一些强大的方法,使得它们能够与外部世界进行更复杂的交互,甚至演化出协程(coroutines)的概念,这是异步编程的基石。

首先是

send()
方法。除了
next()
,你还可以通过
generator.send(value)
来向生成器内部发送一个值。这个值会被
yield
表达式接收到。这意味着生成器不仅可以“产出”数据,还能“接收”数据,从而实现双向通信。这在构建复杂的管道或状态机时非常有用。

def simple_coroutine():
    print("协程启动,等待接收第一个值...")
    x = yield  # 暂停并等待接收一个值
    print(f"协程接收到第一个值: {x}")
    y = yield x * 2 # 再次暂停,产出 x*2,并等待接收第二个值
    print(f"协程接收到第二个值: {y}")
    yield y + 10

# g = simple_coroutine()
# next(g) # 启动协程,执行到第一个 yield
# print(g.send(10)) # 发送 10 给 x,协程继续执行到第二个 yield,并产出 20
# print(g.send(5)) # 发送 5 给 y,协程继续执行到第三个 yield,并产出 15
# next(g) # 会抛出 StopIteration

其次是

throw(type, value=None, traceback=None)
方法。这个方法允许你在生成器外部向其内部抛出一个异常。生成器内部可以用
try...except
块来捕获这个异常。这为外部控制生成器的错误处理流程提供了可能性。

还有

close()
方法。调用
generator.close()
会强制关闭生成器,使其无法再产出任何值,并会在生成器内部当前
yield
语句处抛出
GeneratorExit
异常。如果生成器内部有
finally
块,它会在此时被执行,用于清理资源。这对于需要确保资源被释放的场景非常有用,比如文件句柄或网络连接。

最后,不得不提的是“生成器表达式”。它们是创建生成器的简洁语法,类似于列表推导式,但用圆括号

()
而非方括号
[]
包裹。生成器表达式在内存效率上与生成器函数相同,特别适合一次性迭代的场景。

# 生成器表达式
my_generator_expression = (x * x for x in range(5))
# for val in my_generator_expression:
#     print(val)

这些高级特性让生成器函数超越了简单的迭代工具,成为构建复杂数据流处理、事件驱动系统乃至异步编程(如Python的

asyncio
框架,其
await
async
关键字在底层就是基于生成器的概念演化而来)的强大基石。它们提供了一种优雅的方式来管理程序的状态和控制流,使得代码更加模块化和高效。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

748

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1261

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

Java 项目构建与依赖管理(Maven / Gradle)
Java 项目构建与依赖管理(Maven / Gradle)

本专题系统讲解 Java 项目构建与依赖管理的完整体系,重点覆盖 Maven 与 Gradle 的核心概念、项目生命周期、依赖冲突解决、多模块项目管理、构建加速与版本发布规范。通过真实项目结构示例,帮助学习者掌握 从零搭建、维护到发布 Java 工程的标准化流程,提升在实际团队开发中的工程能力与协作效率。

10

2026.01.12

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号