
python语言的语法由一套严谨的bnf(backus-naur form)或ebnf(extended backus-naur form)规则定义,这对于理解语言的底层机制至关重要。赋值语句作为最基础的操作之一,其语法规则同样清晰明确。根据python官方文档,赋值语句assignment_stmt的bnf定义如下:
assignment_stmt ::= (target_list "=")+ (starred_expression | yield_expression)
target_list ::= target ("," target)* [","]
target ::= identifier
| "(" [target_list] ")"
| "[" [target_list] "]"
| attributeref
| subscription
| slicing
| "*" target对于一个简单的赋值语句,例如a = 9,左侧的a显然可以匹配到target_list中的target,进而匹配到identifier。然而,右侧的9如何匹配到starred_expression或yield_expression,是许多初学者在深入BNF时遇到的困惑。
首先,yield_expression主要用于生成器函数,其结构为"yield" [expression_list | "from" expression],显然9无法匹配此规则。因此,我们的焦点应集中在starred_expression上。
starred_expression的BNF定义如下:
starred_expression ::= expression | (starred_item ",")* [starred_item] starred_item ::= assignment_expression | "*" or_expr
从这里我们可以看到,starred_expression可以直接是一个expression。这意味着,只要9能够被解析为一个expression,那么它就能成功匹配starred_expression。这便是解开谜团的关键一步。
立即学习“Python免费学习笔记(深入)”;
接下来,我们需要追溯expression的BNF定义,直至其能包含数值字面量9。这个递归过程相当深入,但其核心思想是,许多高级表达式形式都允许其最简单的构成部分单独存在,即不包含任何操作符或额外关键字。
以下是expression到integer的完整BNF路径:
starred_expression ::= expression | (starred_item ",")* [starred_item]
expression ::= conditional_expression | lambda_expr
conditional_expression ::= or_test ["if" or_test "else" expression]
or_test ::= and_test | or_test "or" and_test
and_test ::= not_test | and_test "and" not_test
not_test ::= comparison | "not" not_test
comparison ::= or_expr (comp_operator or_expr)*
or_expr ::= xor_expr | or_expr "|" xor_expr
xor_expr ::= and_expr | xor_expr "^" and_expr
and_expr ::= shift_expr | and_expr "&" shift_expr
shift_expr ::= a_expr | shift_expr ("<<" | ">>") a_expr
a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr
m_expr ::= u_expr | m_expr "*" u_expr | m_expr "@" m_expr |
m_expr "//" u_expr | m_expr "/" u_expr |
m_expr "%" u_expr
u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr
power ::= (await_expr | primary) ["**" u_expr]
primary ::= atom | attributeref | subscription | slicing | call
atom ::= identifier | literal | enclosure
literal ::= stringliteral | bytesliteral
| integer | floatnumber | imagnumber
integer ::= decinteger | bininteger | octinteger | hexinteger
decinteger ::= nonzerodigit (["_"] digit)* | "0"+ (["_"] "0")*
nonzerodigit ::= "1"..."9"从上述BNF定义中,我们可以清晰地看到9是如何层层匹配的:
这个递归匹配过程的关键在于,从conditional_expression到power的每一层BNF规则中,其更复杂的、带有操作符或关键字的部分都是可选的(通常用方括号[]表示)。这意味着一个简单的元素,如单个数字9,可以满足这些规则,而无需包含任何逻辑操作符(如or, and)、比较操作符、算术操作符(如+, -, *, /, **)或条件结构(如if/else)。
例如:
正是这种“可选性”贯穿了整个表达式解析链,使得一个最简单的字面量(如9)能够满足最高层的expression要求,进而匹配到赋值语句的右侧。
通过对Python赋值语句BNF的深入分析,我们理解了即使是看似简单的a=9这样的语句,其背后也遵循着一套严谨而复杂的语法解析规则。这种对BNF的理解对于:
注意事项:
理解Python如何解析a=9中的9,不仅仅是解决了特定问题,更是打开了深入理解Python语言语法解析机制的一扇窗。
以上就是深入理解Python赋值语句的BNF语法解析的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号