0

0

Pandas中高效比较两DataFrame值范围并计数匹配项

DDD

DDD

发布时间:2025-09-03 22:01:01

|

191人浏览过

|

来源于php中文网

原创

Pandas中高效比较两DataFrame值范围并计数匹配项

本文探讨了在Pandas中如何高效地比较一个DataFrame的数值是否落在另一个DataFrame定义的范围内,并统计匹配数量。针对传统迭代方法的性能瓶颈,文章详细介绍了利用cross merge进行向量化操作的解决方案,包括其实现步骤、代码解析及关键注意事项,尤其强调了内存消耗问题,为数据分析师提供了优化此类比较任务的专业指导。

引言

在数据分析和处理中,我们经常面临需要比较两个dataframe之间数据关系的任务。一个常见的场景是,需要检查一个dataframe(例如df1)中的特定数值列是否落在另一个dataframe(例如df2)定义的数值区间内,并统计每个区间内的匹配数量。虽然通过遍历df1的每一行并对df2进行条件筛选可以实现,但这种基于python循环的迭代方式在处理大数据集时效率低下,严重影响性能。本文将介绍一种利用pandas内置功能,特别是cross merge操作,实现高效、向量化比较的方法。

传统迭代方法的局限性

假设我们有两个DataFrame,df1包含Date、High、Mid、Low等时间序列数据,df2包含Start、Top、Bottom等区间定义。我们的目标是对于df2中的每一行(即每个区间),统计df1中有多少行的High值高于该区间的Bottom,且Mid或Low的最大值低于该区间的Top,同时Date不等于Start。

一个直观但低效的实现方式可能如下所示:

import pandas as pd

# 示例数据
data1 = {
    'Date': pd.to_datetime(['2023-08-03 00:00:00', '2023-08-03 12:00:00', '2023-11-28 00:00:00', '2023-11-29 08:00:00', '2023-11-24 12:00:00']),
    'High': [29249.8, 29395.8, 37341.4, 38419.0, 38432.9],
    'Mid': [29136.6, 29228.1, 37138.2, 38136.3, 37894.4],
    'Low': [29152.3, 29105.0, 37254.1, 38112.0, 37894.4]
}
df1 = pd.DataFrame(data1)

data2 = {
    'Start': pd.to_datetime(['2023-11-28 00:00:00', '2023-11-24 12:00:00']),
    'Top': [37341.4, 38432.9],
    'Bottom': [37138.2, 37894.4]
}
df2 = pd.DataFrame(data2)

df2['Match'] = 0 # 初始化匹配计数

# 迭代方法 (效率低下)
for idx_df1 in df1.index:
    df2.loc[
        (df2.Start != df1.at[idx_df1, 'Date']) &
        (df2.Bottom < df1.at[idx_df1, 'High']) &
        (df2.Top > df1.loc[idx_df1, ['Mid', 'Low']].max()),
        'Match'] += 1

print("迭代方法结果:")
print(df2)

这种方法通过for循环逐行访问df1的数据,并在每次循环中对整个df2进行条件筛选和更新。在Pandas中,直接的Python循环通常比向量化操作慢几个数量级,因此在处理大型数据集时应尽量避免。

高效解决方案:使用 cross merge

为了实现向量化操作,我们可以利用Pandas的merge函数,特别是how='cross'选项,来创建两个DataFrame的笛卡尔积。这样,df1中的每一行都会与df2中的每一行进行配对,形成一个包含所有可能组合的中间DataFrame。在这个大型DataFrame上,我们可以一次性应用所有比较条件,从而实现高效的筛选和计数。

紫东太初
紫东太初

中科院和武汉AI研究院推出的新一代大模型

下载

以下是使用cross merge的实现代码:

import pandas as pd

# 示例数据 (与上面相同)
data1 = {
    'Date': pd.to_datetime(['2023-08-03 00:00:00', '2023-08-03 12:00:00', '2023-11-28 00:00:00', '2023-11-29 08:00:00', '2023-11-24 12:00:00']),
    'High': [29249.8, 29395.8, 37341.4, 38419.0, 38432.9],
    'Mid': [29136.6, 29228.1, 37138.2, 38136.3, 37894.4],
    'Low': [29152.3, 29105.0, 37254.1, 38112.0, 37894.4]
}
df1 = pd.DataFrame(data1)

data2 = {
    'Start': pd.to_datetime(['2023-11-28 00:00:00', '2023-11-24 12:00:00']),
    'Top': [37341.4, 38432.9],
    'Bottom': [37894.4, 37138.2] # 修正df2的Bottom值,使其与df1数据有匹配
}
df2 = pd.DataFrame(data2)

# 为了避免与原始问题答案的输出不一致,这里对df2的Bottom值进行调整,以便产生匹配
# 原始问题答案中的df2:
#                 Start      Top   Bottom
# 0 2023-11-28 00:00:00  37341.4  37138.2
# 1 2023-11-24 12:00:00  38432.9  37894.4
# 示例数据中df2的Bottom值与问题答案中的df2保持一致,以复现其结果
data2_for_answer = {
    'Start': pd.to_datetime(['2023-11-28 00:00:00', '2023-11-24 12:00:00']),
    'Top': [37341.4, 38432.9],
    'Bottom': [37138.2, 37894.4]
}
df2_final = pd.DataFrame(data2_for_answer)


# 使用 cross merge 的高效方法
df2_final['Match'] = (df2_final.reset_index() # 1. 重置 df2 的索引,以便后续 value_counts 能正确引用
                   .merge(df1, how='cross') # 2. 执行 cross merge,生成笛卡尔积
                   .loc[lambda x: # 3. 应用筛选条件
                        (x.Start !=  x.Date) & # 条件1: 日期不相等
                        (x.Bottom < x.High) & # 条件2: df1的High高于df2的Bottom
                        (x.Top > x[['Mid', 'Low']].max(axis=1))] # 条件3: df1的Mid或Low的最大值低于df2的Top
                   .value_counts('index') # 4. 统计每个原始 df2 索引的匹配数量
                   .reindex(df2_final.index, fill_value=0)) # 5. 重新索引 df2,将未匹配的填充为0

print("\ncross merge 方法结果:")
print(df2_final)

代码解析

  1. df2_final.reset_index(): 在进行cross merge之前,我们首先对df2_final进行reset_index()操作。这是为了将df2_final原有的索引(在此例中是0和1)转换为一个普通的数据列。这样做的好处是,在cross merge之后,这个原始索引列会被保留下来,方便我们后续使用value_counts()来统计每个原始df2_final行的匹配数量。
  2. .merge(df1, how='cross'): 这是核心步骤。how='cross'参数指示Pandas执行两个DataFrame的笛卡尔积。这意味着df1中的每一行都会与df2_final中的每一行进行组合,生成一个拥有len(df1) * len(df2_final)行的新DataFrame。这个新DataFrame包含了所有可能的行组合,使得后续的向量化比较成为可能。
  3. .loc[lambda x: ... ]: 在生成笛卡尔积之后,我们使用.loc结合lambda函数来应用所有的筛选条件。x代表合并后的DataFrame。
    • (x.Start != x.Date): 检查合并后行中Start列的值是否不等于Date列的值。
    • (x.Bottom
    • (x.Top > x[['Mid', 'Low']].max(axis=1)) : 检查Top列的值是否大于Mid和Low两列中的最大值。max(axis=1)确保了对每一行进行Mid和Low的比较。 这些条件共同筛选出所有符合匹配逻辑的行。
  4. .value_counts('index'): 筛选完成后,我们得到一个只包含匹配行的DataFrame。value_counts('index')的作用是统计原始df2_final的每个索引(在步骤1中被保留为index列)出现了多少次,这直接对应了每个df2_final行有多少个匹配项。
  5. .reindex(df2_final.index, fill_value=0): value_counts()只会返回有匹配项的索引及其计数。为了确保df2_final中的所有原始索引都得到一个匹配计数(包括那些没有匹配项的,其计数应为0),我们使用reindex()方法。它将value_counts的结果重新索引到df2_final的原始索引上,对于value_counts中没有出现的索引,fill_value=0会将它们的匹配数设置为0。
  6. df2_final['Match'] = ...: 最后,将计算得到的匹配计数结果赋值给df2_final的新列Match。

性能考虑与注意事项

  • 内存消耗: cross merge操作会生成两个DataFrame的笛卡尔积,其行数等于len(df1) * len(df2)。如果df1和df2都非常大,这个中间DataFrame可能会消耗大量的内存,甚至导致内存溢出。因此,这种方法最适用于其中一个或两个DataFrame大小适中,能够被内存容纳的场景。
  • 计算效率: 尽管存在内存开销,但cross merge结合向量化筛选的计算效率远高于Python循环。Pandas的底层C实现使得大规模的条件判断和聚合操作得以快速执行。
  • 替代方案: 对于极大规模的数据集,当cross merge的内存消耗成为瓶颈时,可能需要考虑其他策略,例如:
    • 分块处理 (Chunking): 将一个或两个DataFrame分成小块,分批进行cross merge和处理。
    • 数据库或分布式计算: 利用SQL数据库的JOIN操作或Apache Spark、Dask等分布式计算框架来处理超大数据集。
    • 专门的区间树/KD树: 如果区间查询是核心且非常频繁,可以考虑使用专门的数据结构(如区间树或KD树)来优化查询性能,但这超出了Pandas的范畴。

总结

在Pandas中比较一个DataFrame的数值是否落在另一个DataFrame定义的范围内并计数匹配项是一个常见的需求。通过利用cross merge创建笛卡尔积并结合向量化筛选,可以显著提高处理效率,避免低效的Python迭代。然而,这种方法的适用性受限于内存资源,对于特大数据集需要权衡利弊或考虑其他分布式解决方案。理解并恰当运用cross merge,将有助于数据分析师在处理复杂数据关系时编写出更高效、更专业的代码。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

773

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

684

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

765

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

719

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1425

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

570

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

579

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

751

2023.08.11

c++ 根号
c++ 根号

本专题整合了c++根号相关教程,阅读专题下面的文章了解更多详细内容。

25

2026.01.23

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 18.6万人学习

Django 教程
Django 教程

共28课时 | 3.4万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号