0

0

使用 Pandas DataFrame 根据条件迭代更新列值

DDD

DDD

发布时间:2025-09-06 17:19:02

|

471人浏览过

|

来源于php中文网

原创

使用 pandas dataframe 根据条件迭代更新列值

本文将介绍一种利用 Pandas DataFrame 根据条件更新列值的高效方法,核心思想是通过重塑数据、分组操作以及前向和后向填充,避免了低效的逐行迭代。

问题描述

假设我们有一个 DataFrame,记录了针对特定 Issue ID 在不同日期所做的更改。DataFrame 中包含以下列:Issue_Id、Due_Date、status、estimation_hour、changed_date、changed_parameter、old_value 和 new_value。我们的目标是基于这些数据,为每个 Issue ID 在每次更改日期创建一个快照。这意味着我们需要根据 changed_date,将 new_value 应用于对应的 changed_parameter,从而更新 DataFrame 中其他行的值。

解决方案

直接迭代 DataFrame 的行并更新值效率较低,尤其是当数据量很大时。一种更有效的方法是使用 Pandas 的 pivot_table 函数来重塑数据,然后使用 groupby 函数按 Issue_Id 进行分组,最后使用 ffill (forward fill) 和 bfill (backward fill) 函数来更新值。

以下是具体的实现步骤:

  1. 定义更新函数:
import pandas as pd

def update_values(df):
    return df['new_value'].ffill().fillna(df['old_value'].bfill())

这个函数使用 ffill() 将 new_value 列中的缺失值用前面的有效值填充,然后使用 fillna(df['old_value'].bfill()) 将剩余的缺失值用 old_value 列的后向填充值填充。这确保了即使某个参数在特定日期没有更改,也能使用最近的值。

千面数字人
千面数字人

千面 Avatar 系列:音频转换让静图随声动起来,动作模仿让动漫复刻真人动作,操作简单,满足多元创意需求。

下载
  1. 重塑数据:
upd_values = (df.pivot_table(index=df.index, columns='changed_parameter',
                             values=['old_value', 'new_value'], aggfunc='first')
                .groupby(df['Issue_Id']).apply(update_values)
                .droplevel('Issue_Id').fillna(df))

pivot_table 函数将 changed_parameter 列转换为新的列,并将 old_value 和 new_value 作为这些列的值。aggfunc='first' 确保对于每个 changed_parameter,只保留第一个值。然后,我们使用 groupby(df['Issue_Id']).apply(update_values) 按 Issue_Id 对数据进行分组,并将 update_values 函数应用于每个组。droplevel('Issue_Id') 移除多余的索引层级。最后,使用 fillna(df) 来填充任何剩余的缺失值,确保所有原始数据都被保留。

  1. 更新 DataFrame:
df[upd_values.columns] = upd_values

这行代码将更新后的值赋回原始 DataFrame。

完整代码示例

import pandas as pd

# 示例数据
data = {'Issue_Id': [101, 101, 101, 101, 101, 101, 101, 102, 102, 102, 102, 102],
        'Due_Date': ['1/31/2023', '1/31/2023', '1/31/2023', '1/31/2023', '1/31/2023', '1/31/2023', '1/31/2023', '2/28/2023', '2/28/2023', '2/28/2023', '2/28/2023', '2/28/2023'],
        'status': ['closed', 'closed', 'closed', 'closed', 'closed', 'closed', 'closed', 'closed', 'closed', 'closed', 'closed', 'closed'],
        'estimation_hour': [40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50],
        'changed_date': ['1/10/2023', '1/15/2023', '1/16/2023', '1/16/2023', '1/20/2023', '1/25/2023', '1/30/2023', '1/10/2023', '1/15/2023', '1/20/2023', '1/25/2023', '1/30/2023'],
        'changed_parameter': ['status', 'estimation_hour', 'estimation_hour', 'Due_Date', 'status', 'estimation_hour', 'status', 'status', 'estimation_hour', 'status', 'estimation_hour', 'status'],
        'old_value': ['Defined', '0', '20', '1/20/2023', 'Accepted', '30', 'InProgress', 'Defined', '0', 'Accepted', '30', 'InProgress'],
        'new_value': ['Accepted', '20', '30', '1/31/2023', 'InProgress', '40', 'Closed', 'Accepted', '30', 'InProgress', '50', 'Closed']}

df = pd.DataFrame(data)

def update_values(df):
    return df['new_value'].ffill().fillna(df['old_value'].bfill())

upd_values = (df.pivot_table(index=df.index, columns='changed_parameter',
                             values=['old_value', 'new_value'], aggfunc='first')
                .groupby(df['Issue_Id']).apply(update_values)
                .droplevel('Issue_Id').fillna(df))

df[upd_values.columns] = upd_values

print(df)

注意事项

  • 确保 DataFrame 按照 changed_date 排序,以保证 ffill 和 bfill 的正确性。
  • 此方法假设 changed_parameter 列中的值是有限的,并且可以作为列名使用。
  • 如果数据量非常大,可以考虑使用更高效的数据结构或分布式计算框架。

总结

通过使用 Pandas 的 pivot_table、groupby、ffill 和 bfill 函数,我们可以高效地根据条件更新 DataFrame 中的列值,避免了低效的逐行迭代。这种方法可以显著提高处理大型数据集的性能。

相关专题

更多
什么是分布式
什么是分布式

分布式是一种计算和数据处理的方式,将计算任务或数据分散到多个计算机或节点中进行处理。本专题为大家提供分布式相关的文章、下载、课程内容,供大家免费下载体验。

326

2023.08.11

分布式和微服务的区别
分布式和微服务的区别

分布式和微服务的区别在定义和概念、设计思想、粒度和复杂性、服务边界和自治性、技术栈和部署方式等。本专题为大家提供分布式和微服务相关的文章、下载、课程内容,供大家免费下载体验。

233

2023.10.07

Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

53

2025.12.04

treenode的用法
treenode的用法

​在计算机编程领域,TreeNode是一种常见的数据结构,通常用于构建树形结构。在不同的编程语言中,TreeNode可能有不同的实现方式和用法,通常用于表示树的节点信息。更多关于treenode相关问题详情请看本专题下面的文章。php中文网欢迎大家前来学习。

536

2023.12.01

C++ 高效算法与数据结构
C++ 高效算法与数据结构

本专题讲解 C++ 中常用算法与数据结构的实现与优化,涵盖排序算法(快速排序、归并排序)、查找算法、图算法、动态规划、贪心算法等,并结合实际案例分析如何选择最优算法来提高程序效率。通过深入理解数据结构(链表、树、堆、哈希表等),帮助开发者提升 在复杂应用中的算法设计与性能优化能力。

17

2025.12.22

深入理解算法:高效算法与数据结构专题
深入理解算法:高效算法与数据结构专题

本专题专注于算法与数据结构的核心概念,适合想深入理解并提升编程能力的开发者。专题内容包括常见数据结构的实现与应用,如数组、链表、栈、队列、哈希表、树、图等;以及高效的排序算法、搜索算法、动态规划等经典算法。通过详细的讲解与复杂度分析,帮助开发者不仅能熟练运用这些基础知识,还能在实际编程中优化性能,提高代码的执行效率。本专题适合准备面试的开发者,也适合希望提高算法思维的编程爱好者。

21

2026.01.06

html编辑相关教程合集
html编辑相关教程合集

本专题整合了html编辑相关教程合集,阅读专题下面的文章了解更多详细内容。

16

2026.01.21

三角洲入口地址合集
三角洲入口地址合集

本专题整合了三角洲入口地址合集,阅读专题下面的文章了解更多详细内容。

17

2026.01.21

AO3中文版入口地址大全
AO3中文版入口地址大全

本专题整合了AO3中文版入口地址大全,阅读专题下面的的文章了解更多详细内容。

215

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Java 教程
Java 教程

共578课时 | 48.7万人学习

国外Web开发全栈课程全集
国外Web开发全栈课程全集

共12课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号