Python 中使用循环进行统计比较的方法

霞舞
发布: 2025-09-09 17:43:01
原创
220人浏览过

python 中使用循环进行统计比较的方法

本文介绍了如何在 Python 中使用循环结构,高效地对多个向量进行统计比较,以避免冗余代码。通过将向量数据存储在列表中,并结合 scipy.stats.wilcoxon 函数,可以简洁地实现 Wilcoxon 符号秩检验等统计分析,极大地提高了代码的可维护性和可扩展性。

在数据分析和科学计算中,经常需要对大量数据进行重复性的统计分析。例如,比较不同条件下同一指标的多组测量值。如果手动编写每个比较的统计代码,将会非常繁琐且容易出错。Python 的循环结构提供了一种优雅的解决方案,可以自动化地完成这些任务。

以下将演示如何使用 for 循环结合 scipy.stats.wilcoxon 函数,对多个向量进行 Wilcoxon 符号秩检验。

1. 数据准备

立即学习Python免费学习笔记(深入)”;

首先,假设我们有两组数据,每组包含多个向量,向量之间需要两两进行比较。 为了方便循环处理,将这些向量存储在列表中。

比格设计
比格设计

比格设计是135编辑器旗下一款一站式、多场景、智能化的在线图片编辑器

比格设计 124
查看详情 比格设计
import scipy.stats as stats

hc_mcp = [0.45, 0.43, 0.46, 0.46, 0.45, 0.39, 0.48, 0.47, 0.50, 0.45, 0.47, 0.47, 0.46]
hc_pct = [0.44, 0.48, 0.45, 0.46, 0.47, 0.37, 0.56, 0.46, 0.49, 0.53, 0.46, 0.47, 0.48]
hc_gcc = [0.51, 0.56, 0.57, 0.54, 0.55, 0.58, 0.51, 0.54, 0.55, 0.54, 0.55, 0.53, 0.54]
hc_bcc = [0.56, 0.62, 0.64, 0.63, 0.60, 0.65, 0.60, 0.64, 0.64, 0.61, 0.63, 0.58, 0.63]
hc_scc = [0.68, 0.73, 0.74, 0.71, 0.72, 0.73, 0.70, 0.72, 0.72, 0.72, 0.71, 0.67, 0.73]

tw_mcp = [0.47, 0.46, 0.44, 0.48, 0.45, 0.45, 0.46, 0.44, 0.47, 0.46, 0.50, 0.49, 0.48]
tw_pct = [0.46, 0.48, 0.45, 0.48, 0.47, 0.45, 0.46, 0.43, 0.43, 0.49, 0.49, 0.47, 0.44]
tw_gcc = [0.56, 0.56, 0.55, 0.57, 0.52, 0.56, 0.53, 0.55, 0.55, 0.55, 0.56, 0.55, 0.56]
tw_bcc = [0.62, 0.63, 0.60, 0.63, 0.61, 0.63, 0.62, 0.63, 0.63, 0.62, 0.63, 0.61, 0.65]
tw_scc = [0.71, 0.70, 0.70, 0.71, 0.68, 0.74, 0.72, 0.73, 0.70, 0.68, 0.69, 0.70, 0.71]

# 将向量存储到列表中
list1 = [hc_mcp, hc_pct, hc_gcc, hc_bcc, hc_scc]
list2 = [tw_mcp, tw_pct, tw_gcc, tw_bcc, tw_scc]
登录后复制

2. 使用循环进行统计比较

接下来,使用 for 循环遍历列表,对每一对向量进行 Wilcoxon 符号秩检验,并将结果(例如 p 值)存储在一个新的列表中。

ri_hc_pvals = []

for ind in range(len(list1)):
    # 进行 Wilcoxon 符号秩检验
    res = stats.wilcoxon(list1[ind], list2[ind])
    # 将 p 值添加到结果列表中
    ri_hc_pvals.append(res.pvalue)

# 打印结果
print(ri_hc_pvals)
登录后复制

代码解释:

  • stats.wilcoxon(list1[ind], list2[ind]): scipy.stats.wilcoxon 函数用于执行 Wilcoxon 符号秩检验,比较 list1 和 list2 中索引为 ind 的向量。
  • res.pvalue: wilcoxon 函数返回一个包含检验结果的对象,res.pvalue 属性表示检验的 p 值。
  • ri_hc_pvals.append(res.pvalue): 将计算得到的 p 值添加到 ri_hc_pvals 列表中。

3. 总结与注意事项

  • 数据顺序: 确保需要比较的向量在两个列表中处于相同的位置。如果向量的顺序不一致,比较结果将是错误的。
  • 统计方法选择: scipy.stats 模块提供了多种统计检验方法,根据数据的特点和研究目的选择合适的检验方法。 例如,如果数据不满足 Wilcoxon 符号秩检验的假设,可以考虑使用其他非参数检验方法。
  • 错误处理: 在实际应用中,建议添加错误处理机制,例如检查列表长度是否一致,以及处理可能出现的异常情况。
  • 代码可读性 为了提高代码的可读性,可以使用有意义的变量名,并添加适当的注释。

通过使用循环结构,可以有效地简化统计比较的代码,提高代码的可维护性和可扩展性。 这种方法适用于各种需要对大量数据进行重复性统计分析的场景。

以上就是Python 中使用循环进行统计比较的方法的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号