
本文旨在提供一种优化Python代码,以解决在素数列表中搜索满足特定条件的素数组合的问题。通过使用Numba库进行即时编译,并结合并行计算,可以显著提高搜索效率。本文将详细介绍如何使用Numba优化代码,并提供完整的示例代码。
我们需要在一个包含2到10万的素数列表中,找到满足以下条件的第一个包含5个素数的集合:
原始代码在解决这个问题时速度非常慢,因此需要进行优化。
Numba是一个Python的即时(JIT)编译器,它可以将Python代码转换为机器码,从而显著提高代码的执行速度。Numba尤其适用于数值计算密集型的代码,例如本例中的素数搜索。
立即学习“Python免费学习笔记(深入)”;
首先,确保已经安装了Numba。可以使用pip进行安装:
pip install numba
以下是使用Numba优化代码的步骤:
import numpy as np from numba import njit, prange
@njit
def prime(a):
if a < 2:
return False
for x in range(2, int(a**0.5) + 1):
if a % x == 0:
return False
return True使用@njit装饰器告诉Numba编译此函数。
@njit
def str_to_int(s):
final_index, result = len(s) - 1, 0
for i, v in enumerate(s):
result += (ord(v) - 48) * (10 ** (final_index - i))
return result此函数用于将两个素数连接成一个整数,例如将3和7连接成37。
@njit
def generate_primes(n):
out = []
for i in range(3, n + 1):
if prime(i):
out.append(i)
return out生成小于n的所有素数。
@njit(parallel=True)
def get_comb(n=100_000):
# generate all primes < n
primes = generate_primes(n)
n_primes = len(primes)
# generate all valid combinations of primes
combs = np.zeros((n_primes, n_primes), dtype=np.uint8)
for i in prange(n_primes):
for j in prange(i + 1, n_primes):
p1, p2 = primes[i], primes[j]
c1 = str_to_int(f"{p1}{p2}")
c2 = str_to_int(f"{p2}{p1}")
if not prime(c1) or not prime(c2):
continue
combs[i, j] = 1
all_combs = []
for i_p1 in prange(0, n_primes):
for i_p2 in prange(i_p1 + 1, n_primes):
if combs[i_p1, i_p2] == 0:
continue
for i_p3 in prange(i_p2 + 1, n_primes):
if combs[i_p1, i_p3] == 0:
continue
if combs[i_p2, i_p3] == 0:
continue
for i_p4 in prange(i_p3 + 1, n_primes):
if combs[i_p1, i_p4] == 0:
continue
if combs[i_p2, i_p4] == 0:
continue
if combs[i_p3, i_p4] == 0:
continue
for i_p5 in prange(i_p4 + 1, n_primes):
if combs[i_p1, i_p5] == 0:
continue
if combs[i_p2, i_p5] == 0:
continue
if combs[i_p3, i_p5] == 0:
continue
if combs[i_p4, i_p5] == 0:
continue
p1, p2, p3, p4, p5 = (
primes[i_p1],
primes[i_p2],
primes[i_p3],
primes[i_p4],
primes[i_p5],
)
ccomb = np.array([p1, p2, p3, p4, p5], dtype=np.int64)
if np.sum(ccomb) < n:
continue
all_combs.append(ccomb)
print(ccomb)
break
return all_combsall_combs = np.array(get_comb())
print()
print("Minimal combination:")
print(all_combs[np.sum(all_combs, axis=1).argmin()])计算所有素数组合的和,并找到最小的和对应的组合。
import numpy as np
from numba import njit, prange
@njit
def prime(a):
if a < 2:
return False
for x in range(2, int(a**0.5) + 1):
if a % x == 0:
return False
return True
@njit
def str_to_int(s):
final_index, result = len(s) - 1, 0
for i, v in enumerate(s):
result += (ord(v) - 48) * (10 ** (final_index - i))
return result
@njit
def generate_primes(n):
out = []
for i in range(3, n + 1):
if prime(i):
out.append(i)
return out
@njit(parallel=True)
def get_comb(n=100_000):
# generate all primes < n
primes = generate_primes(n)
n_primes = len(primes)
# generate all valid combinations of primes
combs = np.zeros((n_primes, n_primes), dtype=np.uint8)
for i in prange(n_primes):
for j in prange(i + 1, n_primes):
p1, p2 = primes[i], primes[j]
c1 = str_to_int(f"{p1}{p2}")
c2 = str_to_int(f"{p2}{p1}")
if not prime(c1) or not prime(c2):
continue
combs[i, j] = 1
all_combs = []
for i_p1 in prange(0, n_primes):
for i_p2 in prange(i_p1 + 1, n_primes):
if combs[i_p1, i_p2] == 0:
continue
for i_p3 in prange(i_p2 + 1, n_primes):
if combs[i_p1, i_p3] == 0:
continue
if combs[i_p2, i_p3] == 0:
continue
for i_p4 in prange(i_p3 + 1, n_primes):
if combs[i_p1, i_p4] == 0:
continue
if combs[i_p2, i_p4] == 0:
continue
if combs[i_p3, i_p4] == 0:
continue
for i_p5 in prange(i_p4 + 1, n_primes):
if combs[i_p1, i_p5] == 0:
continue
if combs[i_p2, i_p5] == 0:
continue
if combs[i_p3, i_p5] == 0:
continue
if combs[i_p4, i_p5] == 0:
continue
p1, p2, p3, p4, p5 = (
primes[i_p1],
primes[i_p2],
primes[i_p3],
primes[i_p4],
primes[i_p5],
)
ccomb = np.array([p1, p2, p3, p4, p5], dtype=np.int64)
if np.sum(ccomb) < n:
continue
all_combs.append(ccomb)
print(ccomb)
break
return all_combs
all_combs = np.array(get_comb())
print()
print("Minimal combination:")
print(all_combs[np.sum(all_combs, axis=1).argmin()])在AMD 5700X CPU上,该代码可以在1分20秒内完成计算。
[ 3 28277 44111 70241 78509] [ 7 61 25939 26893 63601] [ 7 61 25939 61417 63601] [ 7 61 25939 61471 86959] [ 7 2467 24847 55213 92593] [ 7 3361 30757 49069 57331] ... [ 1993 12823 35911 69691 87697] [ 2287 4483 6793 27823 67723] [ 3541 9187 38167 44257 65677] Minimal combination: [ 13 829 9091 17929 72739] real 1m20,599s user 0m0,011s sys 0m0,008s
通过使用Numba进行即时编译和并行计算,可以显著提高Python代码的执行速度,特别是在数值计算密集型的任务中。本文提供了一个具体的例子,展示了如何使用Numba优化素数搜索问题,并提供了完整的示例代码。希望本文能帮助读者更好地理解和应用Numba。
以上就是Python嵌套列表搜索优化:寻找满足特定条件的素数组合的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号