首页 > 数据库 > SQL > 正文

SQL如何求每个用户最长连续登录_SQL分组求最长连续登录

爱谁谁
发布: 2025-09-12 19:49:01
原创
604人浏览过
先通过ROW_NUMBER()与日期差值生成连续登录分组,再按用户和分组统计最大天数。

sql如何求每个用户最长连续登录_sql分组求最长连续登录

想在SQL里揪出每个用户最长的连续登录天数?这问题听起来简单,但其实藏着一些小技巧。核心思路嘛,就是得先把那些连续的登录日期巧妙地“打包”成一个个小块,然后数数每个块里有多少天,最后再从这些块里找出最长的那一个。这过程,通常少不了窗口函数和日期计算的‘魔法’。

解决方案

要解决这个挑战,我们通常会用到一个非常经典的SQL技巧:结合

ROW_NUMBER()
登录后复制
窗口函数和日期运算来创建“连续组”。这个方法在我看来,既优雅又高效。

假设我们有一个

user_logins
登录后复制
表,包含
user_id
登录后复制
(用户ID) 和
login_time
登录后复制
(登录时间戳)。

-- 假设表结构:
-- CREATE TABLE user_logins (
--     user_id INT,
--     login_time DATETIME
-- );

-- 插入一些示例数据
-- INSERT INTO user_logins (user_id, login_time) VALUES
-- (1, '2023-01-01 08:00:00'),
-- (1, '2023-01-02 09:00:00'),
-- (1, '2023-01-03 10:00:00'),
-- (1, '2023-01-05 11:00:00'), -- 这里断开
-- (1, '2023-01-06 12:00:00'),
-- (2, '2023-01-01 13:00:00'),
-- (2, '2023-01-02 14:00:00'),
-- (3, '2023-01-05 15:00:00');

WITH UserDailyLogins AS (
    -- 步骤1: 确保每个用户每天只算一次登录
    -- 这一步很重要,因为用户可能一天内多次登录,但我们只关心“是否登录了这一天”
    SELECT DISTINCT
        user_id,
        CAST(login_time AS DATE) AS login_day -- 统一转换为日期类型,忽略具体时间
    FROM
        user_logins
),
RankedLogins AS (
    -- 步骤2: 为每个用户的登录日期排序,并计算一个“分组标识”
    -- 这是核心魔法所在。我们给每个用户的登录日期按顺序编号 (rn)
    -- 然后用 login_day 减去 rn 天。
    -- 如果日期是连续的 (如 2023-01-01, 2023-01-02, 2023-01-03),
    -- 对应的 rn 也是连续的 (1, 2, 3)。
    -- 那么 2023-01-01 - 1天 = X
    --      2023-01-02 - 2天 = X
    --      2023-01-03 - 3天 = X
    -- 结果 X 会是同一个值,这个值就成了我们“连续块”的唯一标识。
    SELECT
        user_id,
        login_day,
        ROW_NUMBER() OVER (PARTITION BY user_id ORDER BY login_day) AS rn,
        -- MySQL 示例: DATE_SUB(日期, INTERVAL 数量 单位)
        DATE_SUB(login_day, INTERVAL (ROW_NUMBER() OVER (PARTITION BY user_id ORDER BY login_day)) DAY) AS login_group_id
        -- 其他数据库的日期减法可能不同:
        -- PostgreSQL/SQL Server: login_day - (ROW_NUMBER() OVER (...) * INTERVAL '1 day')
        -- Oracle: login_day - (ROW_NUMBER() OVER (...))
    FROM
        UserDailyLogins
),
ConsecutiveStreaks AS (
    -- 步骤3: 根据 user_id 和我们创建的 login_group_id 分组,计算每个连续块的长度
    -- 现在,所有属于同一个连续登录序列的日期,都会有相同的 login_group_id。
    -- 我们只需要按这个 ID 分组,然后计数,就能得到每个连续序列的长度了。
    SELECT
        user_id,
        login_group_id,
        COUNT(login_day) AS streak_length
    FROM
        RankedLogins
    GROUP BY
        user_id, login_group_id
)
-- 步骤4: 找出每个用户最长的连续登录天数
-- 最后一步,从每个用户的所有连续序列长度中,选出最大的那个。
SELECT
    user_id,
    MAX(streak_length) AS longest_consecutive_login
FROM
    ConsecutiveStreaks
GROUP BY
    user_id
ORDER BY
    user_id;
登录后复制

为什么传统的
GROUP BY
登录后复制
难以直接解决连续性问题?

我记得我第一次遇到这类问题时,直觉就是想用

GROUP BY login_day
登录后复制
来着,结果发现根本行不通。传统的
GROUP BY
登录后复制
聚合函数,比如
COUNT()
登录后复制
SUM()
登录后复制
,它处理的是“相同值”的集合。它能告诉你某个用户总共登录了多少天,或者某个日期有多少用户登录,但它对“连续性”这个概念是完全无感的。

想象一下,你有一串日期:

2023-01-01, 2023-01-02, 2023-01-03, 2023-01-05
登录后复制
。对
GROUP BY
登录后复制
来说,
2023-01-01
登录后复制
就是一个独立的组,
2023-01-02
登录后复制
是另一个独立的组,它并不会“知道”前三个日期是连在一起的。它缺乏一种“记忆”或者说“上下文感知”的能力,无法跨行去判断日期的顺序和间隔。要识别这种序列模式,我们需要更高级的工具,而窗口函数恰好提供了这种能力。在我看来,这是
GROUP BY
登录后复制
的设计初衷所限,它更侧重于统计而非序列分析。

窗口函数在处理这类序列问题中的核心作用是什么?

窗口函数在处理序列问题上简直是“救星”级别的存在。对于我们这个“最长连续登录”的问题,

ROW_NUMBER()
登录后复制
扮演了至关重要的角色。

它的核心作用在于:

如知AI笔记
如知AI笔记

如知笔记——支持markdown的在线笔记,支持ai智能写作、AI搜索,支持DeepseekR1满血大模型

如知AI笔记 27
查看详情 如知AI笔记
  1. 赋予序列号:
    ROW_NUMBER() OVER (PARTITION BY user_id ORDER BY login_day)
    登录后复制
    这部分,它的
    PARTITION BY user_id
    登录后复制
    确保了我们是针对每个用户独立编号,不会把不同用户的登录混淆。而
    ORDER BY login_day
    登录后复制
    则保证了编号是按照登录日期递增的。这样,每个用户每次登录都有了一个独一无二的、且按时间顺序排列的序号(
    rn
    登录后复制
    )。
  2. 创建“连续组”标识: 真正的魔法在于
    login_day - rn
    登录后复制
    这个操作。当日期是连续的时候,比如
    Day1, Day2, Day3
    登录后复制
    ,对应的
    rn
    登录后复制
    1, 2, 3
    登录后复制
    。那么
    Day1 - 1
    登录后复制
    ,
    Day2 - 2
    登录后复制
    ,
    Day3 - 3
    登录后复制
    得到的结果会是同一个日期(或者一个固定值)。一旦日期不连续了,比如
    Day3
    登录后复制
    之后是
    Day5
    登录后复制
    ,那么
    Day5 - 4
    登录后复制
    得到的结果就会和前面的值不一样,这就自然而然地“切分”出了一个新的连续组。这个“差值”就成了我们用来
    GROUP BY
    登录后复制
    的神奇标识符
    login_group_id
    登录后复制

可以说,窗口函数提供了“在不折叠行的情况下,对一组相关行进行计算”的能力,这正是我们处理序列问题所需要的。它允许我们“看到”当前行周围的行,从而进行基于位置或顺序的复杂逻辑判断,这是普通聚合函数望尘莫及的。对我来说,掌握

ROW_NUMBER()
登录后复制
配合日期或时间戳的差值运算,是解决很多序列分析问题的“万能钥匙”。

如何处理跨年或日期格式不一致的登录数据?

处理跨年或日期格式不一致的登录数据,其实是这类问题中一个很实际的细节,往往在真实场景里会遇到。

  1. 日期格式标准化: 这是第一步,也是非常关键的一步。用户的

    login_time
    登录后复制
    字段可能存储的是
    DATETIME
    登录后复制
    TIMESTAMP
    登录后复制
    甚至
    VARCHAR
    登录后复制
    字符串。为了确保我们只比较“天”,而不是具体的时分秒,我通常会用
    CAST(login_time AS DATE)
    登录后复制
    或者
    DATE(login_time)
    登录后复制
    (取决于数据库方言)来将其统一转换为日期类型。这样,
    2023-01-01 08:00:00
    登录后复制
    2023-01-01 23:59:59
    登录后复制
    都会被标准化为
    2023-01-01
    登录后复制
    。这避免了因为时间戳差异导致误判为非连续登录的情况。

  2. 跨年处理的兼容性: 我们的核心逻辑

    DATE_SUB(login_day, INTERVAL rn DAY)
    登录后复制
    (或者其他数据库的等效操作)是完全兼容跨年的。日期减去一个整数天数,无论是否跨年,数据库都会正确计算出结果。例如,
    2022-12-31
    登录后复制
    减去一天是
    2022-12-30
    登录后复制
    2023-01-01
    登录后复制
    减去一天是
    2022-12-31
    登录后复制
    。所以,只要日期类型处理得当,这个方法本身就能很好地应对跨年的情况,不需要额外的特殊处理。

  3. 不同数据库的日期函数差异: 虽然原理一样,但不同数据库在日期函数和语法上确实有差异。

    • MySQL: 使用
      DATE_SUB(date, INTERVAL expr unit)
      登录后复制
      DATE_ADD
      登录后复制
    • PostgreSQL: 可以直接
      date - integer
      登录后复制
      或者
      date - (integer * INTERVAL '1 day')
      登录后复制
    • SQL Server:
      DATEADD(day, -integer, date)
      登录后复制
    • Oracle: 可以直接
      date - integer
      登录后复制
      。 在编写代码时,需要根据实际使用的数据库进行调整。我个人在写通用SQL时,会尽量选择一些跨数据库兼容性较好的写法,或者直接在注释中说明不同数据库的等效写法,以防万一。
  4. 性能考量: 对于非常大的数据集,特别是历史登录数据,为

    user_id
    登录后复制
    login_time
    登录后复制
    字段建立复合索引
    (user_id, login_time)
    登录后复制
    是非常有益的。这能显著加速
    PARTITION BY user_id ORDER BY login_day
    登录后复制
    这一步,因为窗口函数需要对数据进行排序。如果数据量巨大,并且只需要查询最近一段时间的登录,那么在
    UserDailyLogins
    登录后复制
    CTE 中提前添加
    WHERE login_time >= 'YYYY-MM-DD'
    登录后复制
    这样的过滤条件,能有效减少处理的数据量,提升查询效率。

以上就是SQL如何求每个用户最长连续登录_SQL分组求最长连续登录的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号