Android OpenCV(四十三):图像分割(Grabcut)

絕刀狂花
发布: 2025-09-20 09:20:02
原创
223人浏览过

图像分割技术是将图像划分为多个具有独特属性的区域,并从中提取感兴趣目标的过程。它是图像处理向图像分析过渡的关键步骤。目前,图像分割方法主要包括基于阈值的分割、基于区域的分割、基于边缘的分割以及基于特定理论的分割等。从数学角度来看,图像分割是将数字图像划分为互不相交的区域的过程,同时也是一个标记过程,即将同一区域的像素赋予相同的编号。

为了解决传统的GrabCut和GraphCut算法需要用户提供精确的前景和背景种子,且种子覆盖不全时分割准确度受影响的问题,微软研究室提出了更为高效的GrabCut分割算法。GrabCut算法只需用户提供一个包含前景的矩形区域,矩形外的区域被视为背景。具体步骤如下:

  1. 将矩形外的像素标记为背景,矩形内的像素标记为前景,并使用这些标记来训练背景和前景的高斯混合模型(GMM);
  2. 使用训练好的GMM计算每个像素属于背景或前景的概率,从而计算能量函数中的Data项,Smoothness项的计算方法与GraphCut类似;
  3. 通过优化能量函数获得图像的一个分割结果;
  4. 使用步骤3中的分割结果重新训练前景和背景的GMM;
  5. 重复步骤2、3、4,直到分割结果收敛(不再有显著变化)。

从上述步骤可以看出,GrabCut是一个通过循环执行来实现EM(期望最大化)算法的过程。由于用户提供的矩形内可能包含部分背景像素,因此初始种子可能不完全准确。然而,GMM模型不需要所有训练数据都正确,即使部分分类错误,也可以通过EM步骤达到正确的最终结果。GrabCut正是利用了GMM的这一特性。不过需要注意的是,GMM存在陷入局部最优解的问题,GrabCut也同样面临这一挑战。

算法论文的地址为:https://www.php.cn/link/ec6019ea251a4e03b08d4135153be64e

API代码语言为JavaScript,代码运行次数为0。以下是API的代码示例:

public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount, int mode)
登录后复制

参数说明如下:

图像转图像AI
图像转图像AI

利用AI轻松变形、风格化和重绘任何图像

图像转图像AI65
查看详情 图像转图像AI
  • 参数一:
    img
    登录后复制
    ,输入的待分割图像,必须是8位三通道图像。
  • 参数二:
    mask
    登录后复制
    ,输入/输出8位单通道掩码图像。像素值及其含义如下:GC_BGD(0)表示明显的背景像素,GC_FGD(1)表示明显的前景像素,GC_PR_BGD(2)表示可能的背景像素,GC_PR_FGD(3)表示可能的前景像素。
  • 参数三:
    rect
    登录后复制
    ,包含细分对象的ROI区域。ROI外的区域被标记为“明显的背景”。当第七个参数
    mode
    登录后复制
    为GC_INIT_WITH_RECT时,该参数才会被使用。
  • 参数四:
    bgdModel
    登录后复制
    ,前景模型临时对象。处理同一图像时,请勿对其进行修改。
  • 参数五:
    fgdModel
    登录后复制
    ,背景模型临时对象。处理同一图像时,请勿对其进行修改。
  • 参数六:
    iterCount
    登录后复制
    ,迭代次数。可以通过使用
    mode == GC_INIT_WITH_MASK
    登录后复制
    mode == GC_EVAL
    登录后复制
    进行进一步调用来完善结果。
  • 参数七:
    mode
    登录后复制
    ,分割模式标志位。标志位值及其含义如下:GC_INIT_WITH_RECT(0)表示使用提供的矩形初始化状态和掩码,之后根据算法进行迭代更新;GC_INIT_WITH_MASK(1)表示使用提供的掩码初始化状态,可以组合使用GC_INIT_WITH_RECT和GC_INIT_WITH_MASK,然后使用GC_BGD自动初始化ROI之外的所有像素;GC_EVAL(2)表示算法应该恢复;GC_EVAL_FREEZE_MODEL(3)表示算法仅在固定模型下运行GrabCut算法(单次迭代)。

以下是JavaScript代码示例:

/** 
 * 图像分割 Grabcut 
 * author: yidong 
 * 2020/11/21 
 */
class GrabcutActivity extends AppCompatActivity {
    private val mBinding: ActivityGrabcutBinding by lazy {
        ActivityGrabcutBinding.inflate(layoutInflater)
    }
    private lateinit var mRgb: Mat
<pre class="brush:php;toolbar:false;"><pre class="brush:php;toolbar:false;">override fun onCreate(savedInstanceState: Bundle?) {
    super.onCreate(savedInstanceState)
    setContentView(mBinding.root)
    val bgr = Utils.loadResource(this, R.drawable.lena)
    mRgb = Mat()
    Imgproc.cvtColor(bgr, mRgb, Imgproc.COLOR_BGR2RGB)
    mBinding.ivLena.showMat(mRgb)
    GlobalScope.launch(Dispatchers.IO) {
        doGrabCut()
    }
}

private fun doGrabCut() {
    val rectMat = Mat()
    mRgb.copyTo(rectMat)
    val rect = Rect(80, 30, 340, 390)
    Imgproc.rectangle(rectMat, rect, Scalar.all(255.0), 2)
    GlobalScope.launch(Dispatchers.Main) {
        mBinding.ivLena.showMat(rectMat)
    }
    val bgdModel = Mat.zeros(1, 65, CvType.CV_64FC1)
    val fgdModel = Mat.zeros(1, 65, CvType.CV_64FC1)
    val mask = Mat.zeros(mRgb.size(), CvType.CV_8UC1)
    Imgproc.grabCut(mRgb, mask, rect, bgdModel, fgdModel, 5, Imgproc.GC_INIT_WITH_RECT)
    val result = Mat()
    for (i in 0 until mask.rows()) {
        for (j in 0 until mask.cols()) {
            val value = mask.get(i, j)[0].toInt()
            if (value == 1 || value == 3) {
                mask.put(i, j, 255.0)
            } else {
                mask.put(i, j, 0.0)
            }
        }
    }
    Core.bitwise_and(mRgb, mRgb, result, mask)
    GlobalScope.launch(Dispatchers.Main) {
        mBinding.ivResult.showMat(result)
    }
}

override fun onDestroy() {
    mRgb.release()
    super.onDestroy()
}
登录后复制

}

效果图如下:

Android OpenCV(四十三):图像分割(Grabcut)Android OpenCV(四十三):图像分割(Grabcut)

源码地址:https://www.php.cn/link/cf3df6fa1165f1ceaa6c246e9d7d0492

以上就是Android OpenCV(四十三):图像分割(Grabcut)的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号