
本文介绍了如何使用 scipy.interpolate 库中的 RBFInterpolator 类进行二维样条插值,并实现超出原始数据范围的外推。通过示例代码详细展示了数据准备、模型训练以及外推的具体步骤,并强调了使用 RBFInterpolator 相对于 Rbf 和 griddata 的优势。
scipy.interpolate 模块提供了多种插值方法,其中径向基函数(Radial Basis Function, RBF)插值是一种常用的方法,特别适用于散乱数据的插值。在二维情况下,RBF 插值可以用于构建一个平滑的曲面,该曲面可以近似原始数据点的值。此外,RBF 插值还支持外推,即预测超出原始数据范围的值。
RBFInterpolator 是 scipy.interpolate 中用于 RBF 插值的类,它提供了比旧的 Rbf 类更强大的功能和更好的性能。它特别适合处理大型数据集和需要外推的情况。
以下是一个使用 RBFInterpolator 进行二维样条插值和外推的示例:
import io
import numpy as np
import pandas as pd
from scipy.interpolate import RBFInterpolator
from numpy import ma
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # 导入 Axes3D
# 假设 data_str 包含你的数据
data_str = """dte,4500,4510,4520,4530,4540,4550,4560,4570,4580,4590,4600
0.015,0.218,0.209,0.201,0.194,0.187,0.181,0.175,0.17,0.165,0.16,0.156
0.041,0.217,0.208,0.2,0.193,0.186,0.18,0.174,0.169,0.164,0.159,0.155
0.068,0.216,0.207,0.199,0.192,0.185,0.179,0.173,0.168,0.163,0.158,0.154
0.096,0.215,0.206,0.198,0.191,0.184,0.178,0.172,0.167,0.162,0.157,0.153
0.123,0.214,0.205,0.197,0.19,0.183,0.177,0.171,0.166,0.161,0.156,0.152
0.151,0.213,0.204,0.196,0.189,0.182,0.176,0.17,0.165,0.16,0.155,0.151
0.178,0.212,0.203,0.195,0.188,0.181,0.175,0.169,0.164,0.159,0.154,0.15
0.206,0.211,0.202,0.194,0.187,0.18,0.174,0.168,0.163,0.158,0.153,0.149
0.233,0.21,0.201,0.193,0.186,0.179,0.173,0.167,0.162,0.157,0.152,0.148
0.26,0.209,0.2,0.192,0.185,0.178,0.172,0.166,0.161,0.156,0.151,0.147
0.288,0.208,0.199,0.191,0.184,0.177,0.171,0.165,0.16,0.155,0.15,0.146
0.315,0.207,0.198,0.19,0.183,0.176,0.17,0.164,0.159,0.154,0.149,0.145
0.342,0.206,0.197,0.189,0.182,0.175,0.169,0.163,0.158,0.153,0.148,0.144
0.37,0.205,0.196,0.188,0.181,0.174,0.168,0.162,0.157,0.152,0.147,0.143
0.397,0.204,0.195,0.187,0.18,0.173,0.167,0.161,0.156,0.151,0.146,0.142
"""
vol = pd.read_csv(io.StringIO(data_str))
vol.set_index('dte', inplace=True)
valid_vol = ma.masked_invalid(vol).T
Ti = np.linspace(float((vol.index).min()), float((vol.index).max()), len(vol.index))
Ki = np.linspace(float((vol.columns).min()), float((vol.columns).max()), len(vol.columns))
Ti, Ki = np.meshgrid(Ti, Ki)
valid_Ti = Ti[~valid_vol.mask]
valid_Ki = Ki[~valid_vol.mask]
valid_vol = valid_vol[~valid_vol.mask]
points = np.column_stack((valid_Ti, valid_Ki))
values = valid_vol.ravel()
# 使用 RBFInterpolator
rbf = RBFInterpolator(points, values, kernel='linear')
# 在原始数据范围之外进行插值
interp_value = rbf(np.array([0.0, 4500])) # 示例:在 Ti=0, Ki=4500 处插值
print(f"外推值: {interp_value}")
# 可视化
fig = plt.figure(figsize=(12, 6))
ax = fig.add_subplot(111, projection='3d')
# 创建用于可视化的网格
x = np.linspace(Ti.min(), Ti.max(), 100)
y = np.linspace(Ki.min(), Ki.max(), 100)
x, y = np.meshgrid(x, y)
# 使用 RBFInterpolator 进行插值
z = rbf(np.column_stack((x.ravel(), y.ravel()))).reshape(x.shape)
# 绘制曲面
surf = ax.plot_surface(x, y, z, cmap='viridis')
# 设置坐标轴标签
ax.set_xlabel('Ti')
ax.set_ylabel('Ki')
ax.set_zlabel('Vol')
# 添加颜色条
fig.colorbar(surf)
plt.title('RBF Interpolation with Extrapolation')
plt.show()代码解释:
注意事项:
总结:
RBFInterpolator 是一个强大的工具,可以用于二维样条插值和外推。通过合理的数据准备和参数选择,可以获得准确的插值结果。在需要外推的情况下,RBFInterpolator 是一个比 Rbf 和 griddata 更好的选择。 它不仅提供了更高的性能,而且更容易使用。
以上就是使用 RBFInterpolator 进行二维样条插值外推的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号