0

0

RDKit中分子极性区域的可视化:从原子电荷到TPSA相似性图

聖光之護

聖光之護

发布时间:2025-10-03 11:58:01

|

334人浏览过

|

来源于php中文网

原创

RDKit中分子极性区域的可视化:从原子电荷到TPSA相似性图

本文旨在指导用户如何利用RDKit工具包在二维分子结构中可视化极性区域。文章将介绍基于Gasteiger电荷的原子高亮方法,并指出其局限性。随后,重点讲解如何利用RDKit内置的TPSA贡献度计算功能,精确识别并高亮显示对总极性表面积有贡献的原子。最后,将展示如何通过相似性图(Similarity Maps)以渐变色形式更直观地呈现极性分布,提供多种专业级分子极性可视化方案。

rdkit作为一个强大的化学信息学工具包,不仅能够处理分子结构数据,还提供了丰富的分子可视化功能。在药物发现和化学性质研究中,识别和可视化分子的极性区域至关重要,因为它直接影响分子的溶解度、渗透性以及与生物靶点的相互作用。本教程将详细介绍几种在rdkit中实现分子极性区域可视化的方法,从简单的原子高亮到更复杂的相似性图,帮助用户根据需求选择最合适的策略。

一、基于Gasteiger电荷的原子高亮显示

最初,用户可能倾向于通过计算原子上的部分电荷来识别极性原子。Gasteiger电荷模型是一种常用的半经验方法,用于估计分子中原子的部分电荷。通过识别带有显著负电荷(或正电荷)的原子,可以尝试将其高亮显示。

1.1 实现方法

以下代码演示了如何计算分子的Gasteiger电荷,并高亮显示带有负电荷的原子:

from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem import AllChem

def highlight_psa_atoms_by_gasteiger(mol):
    """
    根据Gasteiger电荷高亮显示具有负电荷的原子。
    """
    AllChem.ComputeGasteigerCharges(mol)

    # 筛选出Gasteiger电荷小于0的原子
    psa_atoms = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetDoubleProp("_GasteigerCharge") < 0]

    # 设置高亮颜色(红色)
    highlight_style = {atom_id: (1, 0, 0) for atom_id in psa_atoms}

    return highlight_style

# 示例分子:阿司匹林
smiles = "CC(=O)OC1=CC=CC=C1C(O)=O"
mol = Chem.MolFromSmiles(smiles)

# 获取高亮样式
highlight_style = highlight_psa_atoms_by_gasteiger(mol)

# 绘制分子并高亮显示
img = Draw.MolToImage(mol, size=(300, 300), highlightAtoms=highlight_style, wedgeBonds=True, kekulize=True, wedgeLineWidth=2)
img

1.2 注意事项与局限性

这种方法虽然直观,但存在一定的局限性。Gasteiger电荷计算可能会在芳香环等区域产生小的部分电荷,导致这些区域也被错误地高亮显示,而它们通常不被认为是分子极性表面积(Polar Surface Area, PSA)的贡献者。PSA通常特指由氧和氮原子(以及硫和磷,取决于定义)承载的极性氢原子所构成的表面积。因此,简单地基于Gasteiger电荷进行高亮,可能无法准确反映化学上通常理解的极性区域。

二、基于总极性表面积(TPSA)贡献度的可视化

为了更准确地识别分子的极性区域,RDKit提供了计算总极性表面积(TPSA)的功能。TPSA是一个重要的描述符,它量化了分子中极性原子(通常是氧和氮)的表面积。RDKit能够计算每个原子对TPSA的贡献,这为精确可视化极性区域提供了基础。

2.1 实现方法

RDKit的rdMolDescriptors._CalcTPSAContribs函数可以计算每个原子对TPSA的贡献值。贡献值大于0的原子即为TPSA的贡献者,通常是极性原子。

from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem.Draw import rdMolDraw2D
from rdkit.Chem import rdMolDescriptors
from IPython.display import Image

# 示例分子:阿司匹林
smiles = "CC(=O)OC1=CC=CC=C1C(O)=O"
mol = Chem.MolFromSmiles(smiles)

# 计算每个原子对TPSA的贡献
# includeSandP=True 参数可以控制是否将硫和磷原子也纳入TPSA计算
tpsa_contribs = rdMolDescriptors._CalcTPSAContribs(mol, includeSandP=True)

# 筛选出对TPSA有贡献的原子索引
highlight_atoms = [i for i, contrib in enumerate(tpsa_contribs) if contrib > 0]

# 创建一个绘图对象,用于生成PNG图像
drawer = rdMolDraw2D.MolDraw2DCairo(300, 300)

# 绘制分子并高亮显示贡献原子
drawer.DrawMolecule(mol, highlightAtoms=highlight_atoms)
drawer.FinishDrawing()

# 获取PNG数据并显示
png_data = drawer.GetDrawingText()
Image(png_data)

2.2 参数说明

  • rdMolDescriptors._CalcTPSAContribs(mol, includeSandP=True): 这个函数返回一个列表,其中每个元素对应分子中一个原子对TPSA的贡献值。includeSandP参数用于指定是否将硫(S)和磷(P)原子也视为极性原子并纳入TPSA计算。默认情况下,RDKit可能不包含它们。

这种方法能够更准确地识别出对极性表面积有实际贡献的原子,避免了Gasteiger电荷方法中可能出现的误判。

燕雀Logo
燕雀Logo

为用户提供LOGO免费设计在线生成服务

下载

三、使用相似性图(Similarity Maps)进行渐变色可视化

除了简单的原子高亮,RDKit还提供了更高级的可视化工具——相似性图(Similarity Maps),可以将原子权重映射到分子结构上,通过渐变色来表示不同区域的极性强度,从而提供更直观、更细致的极性分布视图。

3.1 实现方法

SimilarityMaps.GetSimilarityMapFromWeights函数允许用户将一个权重列表(例如TPSA贡献值)应用于分子,并生成一个带有颜色渐变的图像。

import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem, Draw, rdMolDescriptors
from rdkit.Chem.Draw import SimilarityMaps
from matplotlib import pyplot as plt # 导入pyplot用于显示图像

# 示例分子
smiles = "CCNC(=O)NC1=NC2=CC=C(C=C2S1)C(=O)NCCS" 
mol = Chem.MolFromSmiles(smiles)

# 计算每个原子对TPSA的贡献
# includeSandP=True 参数可以控制是否将硫和磷原子也纳入TPSA计算
tpsa_contribs = rdMolDescriptors._CalcTPSAContribs(mol, includeSandP=True)

# 生成相似性图
# weights: 每个原子的权重,这里使用TPSA贡献值
# colorMap: 颜色映射方案,例如 'bwr' (蓝白红) 是一种常见的发散型色图
# contourLines: 等高线数量,用于在图上显示不同权重的分界线
fig = SimilarityMaps.GetSimilarityMapFromWeights(
    mol,
    size=(400, 400),
    weights=tpsa_contribs,
    colorMap='bwr',  # 可以尝试其他色图,如 'viridis', 'plasma', 'jet' 等
    contourLines=10  # 调整等高线数量以获得最佳视觉效果
)

# 保存图像或直接显示
fig.savefig('tpsa_similarity_map.png', bbox_inches='tight')
plt.show() # 在Jupyter Notebook或脚本中显示图像

3.2 参数说明与最佳实践

  • weights: 这是一个与分子中原子数量相同的数值列表,每个值代表对应原子的权重。在本例中,我们使用TPSA贡献值。
  • colorMap: 颜色映射方案。对于表示极性强度等连续数据,推荐使用发散型色图(如bwr,蓝代表低值,红代表高值,白色代表中间值)或顺序型色图(如viridis, plasma等)。matplotlib库提供了丰富的色图选择,可以在其官方文档中查看。
  • contourLines: 等高线的数量。等高线可以帮助用户更清晰地识别不同极性强度区域的边界。
  • 选择合适的色图:对于极性分布,通常希望能够区分“非极性”到“极性”的连续变化。bwr(蓝白红)是一个很好的选择,它可以清晰地表示正负或低高两端。

四、总结与建议

本教程介绍了RDKit中可视化分子极性区域的三种主要方法:

  1. 基于Gasteiger电荷的原子高亮:简单易行,但可能不够精确,容易将非极性区域误判为极性。适用于快速初步的定性分析。
  2. 基于TPSA贡献度的原子高亮:更准确地识别对总极性表面积有贡献的原子,是推荐的精确识别极性原子的方法。
  3. 使用相似性图进行渐变色可视化:提供最直观、最细致的极性强度分布视图,通过颜色渐变而非简单的点或线来表示极性。适用于需要深入分析极性分布模式的场景。

在实际应用中,推荐优先使用基于TPSA贡献度的方法来精确识别极性原子,或使用相似性图来获得更丰富的极性分布信息。虽然RDKit在可视化美观度上可能不如一些商业软件(如OpenEye)那样精致,但其功能强大且高度可定制,足以满足大多数科学研究和药物设计中的需求。通过灵活运用这些工具,用户可以有效地在RDKit中探索和展示分子的极性特征。

相关专题

更多
Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

5

2026.01.21

C++多线程相关合集
C++多线程相关合集

本专题整合了C++多线程相关教程,阅读专题下面的的文章了解更多详细内容。

0

2026.01.21

无人机驾驶证报考 uom民用无人机综合管理平台官网
无人机驾驶证报考 uom民用无人机综合管理平台官网

无人机驾驶证(CAAC执照)报考需年满16周岁,初中以上学历,身体健康(矫正视力1.0以上,无严重疾病),且无犯罪记录。个人需通过民航局授权的训练机构报名,经理论(法规、原理)、模拟飞行、实操(GPS/姿态模式)及地面站训练后考试合格,通常15-25天拿证。

7

2026.01.21

Python多线程合集
Python多线程合集

本专题整合了Python多线程相关教程,阅读专题下面的文章了解更多详细内容。

1

2026.01.21

java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

2

2026.01.21

windows激活码分享 windows一键激活教程指南
windows激活码分享 windows一键激活教程指南

Windows 10/11一键激活可以通过PowerShell脚本或KMS工具实现永久或长期激活。最推荐的简便方法是打开PowerShell(管理员),运行 irm https://get.activated.win | iex 脚本,按提示选择数字激活(选项1)。其他方法包括使用HEU KMS Activator工具进行智能激活。

2

2026.01.21

excel表格操作技巧大全 表格制作excel教程
excel表格操作技巧大全 表格制作excel教程

Excel表格操作的核心技巧在于 熟练使用快捷键、数据处理函数及视图工具,如Ctrl+C/V(复制粘贴)、Alt+=(自动求和)、条件格式、数据验证及数据透视表。掌握这些可大幅提升数据分析与办公效率,实现快速录入、查找、筛选和汇总。

6

2026.01.21

毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm
毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm

毒蘑菇VOLUMESHADER_BM测试网站网址为https://toolwa.com/vsbm/,该平台基于WebGL技术通过渲染高复杂度三维分形图形评估设备图形处理能力,用户可通过拖动彩色物体观察画面流畅度判断GPU与CPU协同性能;测试兼容多种设备,但中低端手机易卡顿或崩溃,高端机型可能因发热降频影响表现,桌面端需启用独立显卡并使用支持WebGL的主流浏览器以确保准确结果

9

2026.01.21

github中文官网入口 github中文版官网网页进入
github中文官网入口 github中文版官网网页进入

github中文官网入口https://docs.github.com/zh/get-started,GitHub 是一种基于云的平台,可在其中存储、共享并与他人一起编写代码。 通过将代码存储在GitHub 上的“存储库”中,你可以: “展示或共享”你的工作。 持续“跟踪和管理”对代码的更改。

7

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 9.5万人学习

Django 教程
Django 教程

共28课时 | 3.3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号