0

0

解决余弦相似度始终为 1 的问题:深度学习中的向量表示分析

DDD

DDD

发布时间:2025-10-03 16:02:10

|

326人浏览过

|

来源于php中文网

原创

解决余弦相似度始终为 1 的问题:深度学习中的向量表示分析

第一段引用上面的摘要:

本文旨在解决深度学习模型中余弦相似度始终为 1 的问题。我们将分析问题代码,解释余弦相似度计算的原理,并提供排查和解决此类问题的思路,帮助读者理解向量表示的含义,避免在实际项目中遇到类似困境。核心在于理解向量方向性,并检查模型输出是否塌陷到同一方向。

在深度学习项目中,使用余弦相似度来衡量两个向量之间的相似性是很常见的做法,尤其是在处理嵌入向量时。然而,有时会遇到余弦相似度始终为 1 的情况,这通常意味着模型输出存在问题。接下来,我们将结合一个实际的例子,分析可能的原因以及相应的解决方案。

理解余弦相似度

余弦相似度衡量的是两个向量方向上的相似程度,而不是它们的大小。公式如下:

cosine_similarity(A, B) = (A · B) / (||A|| * ||B||)

其中:

  • A · B 是向量 A 和 B 的点积。
  • ||A|| 和 ||B|| 分别是向量 A 和 B 的模(长度)。

这意味着,即使两个向量的模不同,只要它们的方向相同,余弦相似度仍然为 1。这在某些情况下是有用的,但在另一些情况下则可能表明模型存在问题。

问题分析

提供的代码片段展示了一个使用 VGG 模型提取图像特征,然后计算特征向量之间余弦相似度的训练过程。如果余弦相似度始终为 1,可能的原因包括:

  1. 向量塌陷: 模型学习到的特征表示可能过于相似,导致所有图像的特征向量都指向同一个方向。
  2. 梯度消失/爆炸: 训练过程中可能出现梯度消失或爆炸问题,导致模型无法有效学习区分不同图像的特征。
  3. 初始化问题: 模型的权重初始化可能导致输出向量一开始就非常相似。
  4. 代码错误: 虽然问题描述中排除了手动计算余弦相似度的错误,但仍然需要仔细检查代码中余弦相似度计算的部分,确保没有其他潜在错误。
  5. 模型结构问题: 模型结构可能无法很好地提取图像特征,导致输出的向量过于相似。例如,层数不够深,或者激活函数选择不当。

解决方案

针对以上可能的原因,可以尝试以下解决方案:

  1. 检查模型输出: 首先,打印出 vector1_tensor 和 vector2_tensor 的值,观察它们是否真的不同。如果它们的值非常接近,那么问题很可能在于模型学习到的特征表示。可以使用 torch.unique() 函数检查向量中是否存在唯一值,如果大部分值都相同,则说明向量塌陷。

  2. 调整学习率: 尝试降低学习率,或者使用自适应学习率优化器(如 Adam)来缓解梯度消失/爆炸问题。

  3. 权重初始化: 尝试不同的权重初始化方法,例如使用 Xavier 或 He 初始化。Pytorch 默认的初始化方式在某些情况下可能不适用。

    def init_weights(m):
        if isinstance(m, nn.Linear):
            torch.nn.init.xavier_uniform(m.weight)
            m.bias.data.fill_(0.01)
    
    model.apply(init_weights)
  4. 正则化: 添加 L1 或 L2 正则化项,以防止模型过拟合,并鼓励模型学习更具区分性的特征。

    Cutout.Pro抠图
    Cutout.Pro抠图

    AI批量抠图去背景

    下载
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5) # L2 正则化
  5. 数据增强: 使用更多的数据增强技术来增加数据的多样性,帮助模型学习更鲁棒的特征。

  6. 修改模型结构: 尝试增加模型的深度,或者使用不同的激活函数(如 ReLU, LeakyReLU, ELU 等)。考虑使用更先进的网络结构,例如 ResNet 或 EfficientNet,它们在图像特征提取方面表现更好。

  7. Batch Normalization: 在卷积层和全连接层之后添加 Batch Normalization 层,有助于加速训练并提高模型的泛化能力。

    class conv_2(nn.Module):
        def __init__(self, in_channels, out_channels):
            super(conv_2, self).__init__()
            self.conv = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
                nn.BatchNorm2d(out_channels), # 添加 Batch Normalization
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=2, stride=2)
            )
    
        def forward(self, x):
            return self.conv(x)
  8. 调整损失函数: 可以尝试使用对比损失 (Contrastive Loss) 或 Triplet Loss 等损失函数,这些损失函数专门设计用于学习嵌入向量,并鼓励相似的样本在嵌入空间中更接近,不相似的样本更远离。由于代码中已经考虑了标签信息,使用对比损失或三元组损失可能更合适。

    以下是使用对比损失的示例代码:

    class ContrastiveLoss(nn.Module):
        def __init__(self, margin=1.0):
            super(ContrastiveLoss, self).__init__()
            self.margin = margin
    
        def forward(self, output1, output2, label):
            euclidean_distance = F.pairwise_distance(output1, output2)
            loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +
                                          (label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))
            return loss_contrastive
    
    loss = ContrastiveLoss()

    在使用对比损失时,需要修改训练循环中的损失计算部分。

  9. 梯度检查: 检查梯度是否正常流动。可以使用 torch.autograd.gradcheck 来检查自定义操作的梯度计算是否正确。

代码示例改进

在原代码中,image2, label2 和 vector2_tensor 在循环中被重复使用,这可能会导致问题。应该确保每次迭代都使用不同的 vector2_tensor 来计算相似度。

for i, (_image1, _label1) in enumerate(train_loader):
    image1 = _image1.to(DEVICE)
    label1 = _label1[0]
    vector1_tensor = model(image1)

    # 使用不同的 image2 和 vector2_tensor
    for j, (_image2, _label2) in enumerate(train_loader):
        if i == j: # 避免与自身比较
            continue
        image2 = _image2.to(DEVICE)
        label2 = _label2[0]
        vector2_tensor = model(image2)

        similarity =  F.cosine_similarity(vector1_tensor, vector2_tensor, dim = -1)
        scaled_similarity = torch.sigmoid(similarity)

        if label1 == label2:
            target_vector = [1]
        else :
            target_vector = [0]

        target_tensor = torch.tensor(target_vector).float()
        target_tensor = target_tensor.to(DEVICE)

        optimizer.zero_grad()
        cost = loss(scaled_similarity, target_tensor)
        cost.backward()
        optimizer.step()
        break #只与一个其他样本比较

    if not i % 40:
        print (f'Epoch: {epoch:03d}/{EPOCH:03d} | '
              f'Batch {i:03d}/{len(train_loader):03d} |'
               f' Cost: {cost:.4f}')

这个修改后的代码片段确保了每次迭代都使用不同的图像对来计算余弦相似度,避免了使用相同的 vector2_tensor 导致的问题。 当然,这个修改会显著增加计算量,需要根据实际情况进行调整。

总结

当余弦相似度始终为 1 时,需要从多个角度进行分析和排查。首先,要确保代码的正确性,特别是余弦相似度计算的部分。其次,要检查模型输出,观察特征向量是否过于相似。最后,要尝试调整训练参数、模型结构和损失函数,以提高模型的学习能力,并鼓励模型学习更具区分性的特征。 记住,解决此类问题需要耐心和细致的分析,逐步排除可能的原因,最终找到问题的根源。

相关专题

更多
pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

428

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

7

2025.12.22

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

4

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

7

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

7

2025.12.31

出现404解决方法大全
出现404解决方法大全

本专题整合了404错误解决方法大全,阅读专题下面的文章了解更多详细内容。

42

2025.12.31

html5怎么播放视频
html5怎么播放视频

想让网页流畅播放视频?本合集详解HTML5视频播放核心方法!涵盖<video>标签基础用法、多格式兼容(MP4/WebM/OGV)、自定义播放控件、响应式适配及常见浏览器兼容问题解决方案。无需插件,纯前端实现高清视频嵌入,助你快速打造现代化网页视频体验。

4

2025.12.31

关闭win10系统自动更新教程大全
关闭win10系统自动更新教程大全

本专题整合了关闭win10系统自动更新教程大全,阅读专题下面的文章了解更多详细内容。

3

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Java 教程
Java 教程

共578课时 | 40万人学习

国外Web开发全栈课程全集
国外Web开发全栈课程全集

共12课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号