0

0

优化Pandas大型CSV文件处理:向量化操作与性能提升

花韻仙語

花韻仙語

发布时间:2025-10-08 13:39:22

|

460人浏览过

|

来源于php中文网

原创

优化pandas大型csv文件处理:向量化操作与性能提升

本教程旨在解决Python Pandas处理大型CSV文件时的性能瓶颈。文章将深入探讨为何应避免使用iterrows()和apply()等迭代方法,并重点介绍如何利用Pandas的向量化操作大幅提升数据处理效率。此外,还将提供分块读取(chunksize)等进阶优化策略,帮助用户高效处理百万级别甚至更大规模的数据集。

理解Pandas性能瓶颈:为何避免iterrows()和apply()

在处理大型数据集时,Python Pandas因其高效的数据结构和丰富的操作函数而广受欢迎。然而,许多初学者在使用Pandas时常会遇到性能问题,尤其是在尝试逐行处理数据时。一个常见的误区是使用DataFrame.iterrows()或DataFrame.apply()方法。

例如,原始问题中提供的伪代码片段展示了典型的逐行迭代模式:

import os
import pandas as pd

# 假设 dados 是一个已加载的DataFrame
# dados = pd.read_csv('your_file.csv')

for i, row in dados.iterrows():
    # 对每一行执行复杂逻辑
    # 例如:检查 row['column_a'] 或 row['column_b'] 是否包含特定值
    # 如果满足条件,将 row['column_c'] 添加到列表中
    pass

这种模式对于小型数据集可能可行,但当数据量达到数千行时,性能会急剧下降。根据原始问题描述,1000行数据需要约40秒,10000行则需要400秒,这表明处理百万行数据将耗费数小时甚至更长时间,效率极低。

核心原因在于: iterrows()和apply()本质上是Python级别的循环。Pandas底层是基于NumPy和C语言实现的,其大部分操作都经过高度优化。当使用Python循环逐行处理时,Pandas的这些底层优化优势无法发挥,每次迭代都需要将数据从优化的C结构转换回Python对象,导致巨大的开销。这使得这些方法在性能上远不如Pandas的内置向量化操作。

核心优化策略:拥抱向量化操作

Pandas的核心优势在于其能够对整个Series(列)或DataFrame执行操作,而无需显式的Python循环。这种方法称为“向量化操作”,它利用了NumPy数组的强大功能和C语言的执行效率。

什么是向量化操作? 向量化操作是指将一个函数或操作应用到整个数组或Series上,而不是逐个元素地进行。Pandas会将这些操作转化为底层的C或NumPy函数调用,从而实现极高的执行速度。

示例:简单的向量化操作

考虑一个简单的例子,为DataFrame添加一个新列,该列是现有列加1的结果:

import pandas as pd

df = pd.DataFrame({'existing_column': [1, 2, 3, 4, 5]})

# 传统循环(应避免)
# new_column_list = []
# for val in df['existing_column']:
#     new_column_list.append(val + 1)
# df['new_column'] = new_column_list

# 向量化操作
df['new_column'] = df['existing_column'] + 1
print(df)

输出:

   existing_column  new_column
0                1           2
1                2           3
2                3           4
3                4           5
4                5           6

这里的df['existing_column'] + 1就是典型的向量化操作,它比任何Python循环都要快得多。

将原始问题逻辑转化为向量化操作

Giiso写作机器人
Giiso写作机器人

Giiso写作机器人,让写作更简单

下载

回到原始问题中的伪代码逻辑: “对于列表中的每个项,检查row[column_a]或row[column_b]是否包含该项作为值,如果为真,则将row[column_c]添加到列表中。”

假设我们有一个search_items列表,并且我们想检查column_a或column_b中的值是否精确匹配search_items中的任何一个。我们可以这样进行向量化:

import pandas as pd

# 模拟数据
data = {
    'column_a': ['apple', 'banana', 'orange', 'grape', 'kiwi'],
    'column_b': ['red', 'yellow', 'green', 'purple', 'yellow'],
    'column_c': [10, 20, 30, 40, 50]
}
dados = pd.DataFrame(data)

# 待搜索的项列表
search_items = ['banana', 'green', 'kiwi']

# 创建布尔掩码:检查 'column_a' 中的值是否在 search_items 中
mask_a = dados['column_a'].isin(search_items)

# 创建布尔掩码:检查 'column_b' 中的值是否在 search_items 中
mask_b = dados['column_b'].isin(search_items)

# 合并两个掩码:如果 column_a 或 column_b 满足条件
combined_mask = mask_a | mask_b

# 使用合并后的掩码选择 'column_c' 中的值,并转换为列表
result_list = dados.loc[combined_mask, 'column_c'].tolist()

print("符合条件的 column_c 值列表:", result_list)

输出:

符合条件的 column_c 值列表: [20, 30, 50]

这个向量化方法避免了显式循环,利用Pandas和NumPy的底层优化,大大提高了处理速度。对于字符串包含匹配(而非精确匹配),可以使用str.contains()结合正则表达式

进阶优化:分块读取大型文件 (chunksize)

即使使用了向量化操作,如果CSV文件极其庞大(例如,数亿行或数十GB),一次性加载到内存中仍然可能导致内存溢出。在这种情况下,可以使用pd.read_csv()的chunksize参数来分块读取文件。

chunksize参数允许你指定每次读取的行数,read_csv会返回一个迭代器,每次迭代产生一个DataFrame块。你可以对每个块应用向量化操作,然后将结果聚合起来。

import pandas as pd
import os

# 假设文件路径
# 在实际应用中,请替换为你的CSV文件路径
desktop_path = os.path.join(os.path.join(os.environ["USERPROFILE"]), "Desktop")
file_path = os.path.join(desktop_path, 'your_large_file.csv') # 请替换为你的实际文件

# 模拟一个大型文件处理场景
# 待搜索的项列表
search_items = ['banana', 'green', 'kiwi']

# 定义一个函数来处理每个数据块
def process_chunk(chunk_df, search_items_list):
    mask_a = chunk_df['column_a'].isin(search_items_list)
    mask_b = chunk_df['column_b'].isin(search_items_list)
    combined_mask = mask_a | mask_b
    return chunk_df.loc[combined_mask, 'column_c'].tolist()

all_results = []
# 设置 chunksize,例如每次读取100,000行
# 根据你的内存和文件大小调整此值
chunk_size = 100000

# 迭代读取CSV文件
for chunk_id, chunk in enumerate(pd.read_csv(file_path, chunksize=chunk_size)):
    print(f"正在处理第 {chunk_id + 1} 个数据块...")
    chunk_result = process_chunk(chunk, search_items)
    all_results.extend(chunk_result)

print("\n所有符合条件的 column_c 值列表 (分块处理):", all_results)

通过分块处理,即使文件大小超过可用内存,也能有效地进行数据处理。这种方法适用于需要聚合结果或在每个块上独立完成任务的场景。

总结与最佳实践

处理大型CSV文件时,提高Pandas性能的关键在于:

  1. 避免Python循环: 尽量不使用iterrows()、itertuples()或apply()(尤其是当apply需要对每一行执行复杂逻辑时)。它们会将Pandas的性能优势降至最低。
  2. 优先使用向量化操作: 尽可能将数据操作转化为对整个Series或DataFrame的函数调用。利用Pandas内置的函数、NumPy函数和布尔索引。
  3. 利用chunksize处理超大文件: 当文件大小超出内存限制时,使用pd.read_csv(chunksize=...)分块读取和处理数据。
  4. 数据类型优化: 确保DataFrame中的列使用最合适的数据类型(例如,使用category类型处理重复的字符串,使用更小的整数类型)。
  5. 考虑其他库: 对于真正海量的数据集(例如,TB级别),可以考虑使用Dask(分布式Pandas)或Polars(Rust-based,速度极快)等专门为大数据设计的库。

通过遵循这些最佳实践,你可以显著提高Python Pandas处理大型CSV文件的效率,从而在面对百万级甚至更大数据量时也能游刃有余。

相关文章

数码产品性能查询
数码产品性能查询

该软件包括了市面上所有手机CPU,手机跑分情况,电脑CPU,电脑产品信息等等,方便需要大家查阅数码产品最新情况,了解产品特性,能够进行对比选择最具性价比的商品。

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

769

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

661

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

764

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

659

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1325

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

549

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

579

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

709

2023.08.11

AO3中文版入口地址大全
AO3中文版入口地址大全

本专题整合了AO3中文版入口地址大全,阅读专题下面的的文章了解更多详细内容。

1

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 10.9万人学习

Django 教程
Django 教程

共28课时 | 3.3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号