Polars中列表列的余弦相似度计算与矩阵生成教程

霞舞
发布: 2025-10-09 09:36:51
原创
952人浏览过

Polars中列表列的余弦相似度计算与矩阵生成教程

本教程详细介绍了如何在polars dataframe中对列表(list)类型的列进行两两余弦相似度计算,并将结果整理成一个对称的相似度矩阵。通过利用polars的内置表达式、join_where生成组合以及pivot操作,我们能够高效地处理列表数据并避免使用性能较低的python udfs,从而实现类似于相关性矩阵的输出。

在数据分析和机器学习领域,计算向量之间的相似度是常见的任务。当数据存储在Polars DataFrame的列表(List)类型列中时,我们可能需要计算这些列表值之间的两两余弦相似度,并以矩阵形式展示结果,类似于相关性矩阵。本教程将指导您如何高效地完成这一任务,避免直接使用Python用户定义函数(UDFs)可能带来的性能问题。

1. 数据准备

首先,我们创建一个包含列表类型数据的Polars DataFrame作为示例:

import polars as pl

data = {
    "col1": ["a", "b", "c", "d"],
    "col2": [[-0.06066, 0.072485, 0.548874, 0.158507],
             [-0.536674, 0.10478, 0.926022, -0.083722],
             [-0.21311, -0.030623, 0.300583, 0.261814],
             [-0.308025, 0.006694, 0.176335, 0.533835]],
}

df = pl.DataFrame(data)
print("原始DataFrame:")
print(df)
登录后复制

输出:

原始DataFrame:
shape: (4, 2)
┌──────┬─────────────────────────────────┐
│ col1 ┆ col2                            │
│ ---  ┆ ---                             │
│ str  ┆ list[f64]                       │
╞══════╪═════════════════════════════════╡
│ a    ┆ [-0.06066, 0.072485, … 0.15850… │
│ b    ┆ [-0.536674, 0.10478, … -0.0837… │
│ c    ┆ [-0.21311, -0.030623, … 0.2618… │
│ d    ┆ [-0.308025, 0.006694, … 0.5338… │
└──────┴─────────────────────────────────┘
登录后复制

我们的目标是计算 col1 中每个唯一值(例如 'a', 'b')对应的 col2 列表之间的余弦相似度,并最终生成一个4x4的相似度矩阵。

乾坤圈新媒体矩阵管家
乾坤圈新媒体矩阵管家

新媒体账号、门店矩阵智能管理系统

乾坤圈新媒体矩阵管家 17
查看详情 乾坤圈新媒体矩阵管家

2. 生成所有组合

为了计算所有可能的两两相似度,我们需要将DataFrame与自身进行连接,以生成所有唯一的配对。这里我们将使用 with_row_index() 为每行添加一个索引,然后通过 join_where() 进行条件连接,确保只生成上三角矩阵(包括对角线)的组合,避免重复计算。

# 进入Lazy模式以提高性能
df_lazy = df.with_row_index().lazy()

# 使用join_where生成所有组合,只保留index <= index_right的部分
combinations_df = df_lazy.join_where(df_lazy, pl.col.index <= pl.col.index_right).collect()

print("\n生成的组合DataFrame:")
print(combinations_df)
登录后复制

输出:

生成的组合DataFrame:
shape: (10, 6)
┌───────┬──────┬─────────────────────────────────┬─────────────┬────────────┬─────────────────────────────────┐
│ index ┆ col1 ┆ col2                            ┆ index_right ┆ col1_right ┆ col2_right                      │
│ ---   ┆ ---  ┆ ---                             ┆ ---         ┆ ---        ┆ ---                             │
│ u32   ┆ str  ┆ list[f64]                       ┆ u32         ┆ str        ┆ list[f64]                       │
╞═══════╪══════╪═════════════════════════════════╪═════════════╪════════════╪═════════════════════════════════╡
│ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 0           ┆ a          ┆ [-0.06066, 0.072485, … 0.15850… │
│ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 1           ┆ b          ┆ [-0.536674, 0.10478, … -0.0837… │
│ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 2           ┆ c          ┆ [-0.21311, -0.030623, … 0.2618… │
│ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 3           ┆ d          ┆ [-0.308025, 0.006694, … 0.5338… │
│ 1     ┆ b    ┆ [-0.536674, 0.10478, … -0.0837… ┆ 1           ┆ b          ┆ [-0.536674, 0.10478, … -0.0837… │
│ 1     ┆ b    ┆ [-
登录后复制

以上就是Polars中列表列的余弦相似度计算与矩阵生成教程的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号