
在业务预测中,我们常会遇到这样的场景:有多个相互独立的潜在项目或任务,每个任务都有其独立的成功概率和一旦成功将带来的特定产出(例如,工时、收入等)。我们的目标是了解所有任务组合起来,最终能够获得的总产出及其对应的概率。例如,我们可能想知道获得超过x小时产出的概率是多少,或者想绘制一个图表,显示不同总产出水平的发生概率。
直接将所有任务的概率简单相乘或平均通常是错误的,因为每个任务的成功与否都是一个独立的二元事件,并且不同的任务组合会导致不同的总产出,这些组合本身是互斥的。我们需要一种方法来系统地处理这些独立的概率事件,以准确地计算总产出的概率分布。
由于每个任务只有“成功”或“失败”两种结果,且任务之间相互独立,我们可以通过枚举所有可能的任务结果组合来解决这个问题。如果存在 n 个任务,那么总共会有 2^n 种不同的场景。对于每个场景,我们可以计算其发生的总概率和对应的总产出。
基本步骤:
为了更好地理解,我们以一个简化的Python示例来说明。假设我们有5个任务,每个任务有其成功概率和对应的潜在产出(小时数)。
import json
# 示例数据
jobs = ['job1', 'job2', 'job3', 'job4', 'job5']
probabilities = [0.1, 0.1, 0.4, 0.6, 0.2] # 各任务的成功概率
hours = [1, 10, 43, 2, 5] # 各任务成功后的产出(小时)
min_hours_desired = 10 # 目标:获得超过10小时产出的概率
# 1. 生成所有可能的任务结果场景
# 每个场景可以表示为一个二进制字符串,'0'表示失败,'1'表示成功
scenarios = []
jobs_len = len(jobs)
for i in range(2**jobs_len):
# 将整数i转换为二进制字符串,并用'0'填充至jobs_len长度
scenario = bin(i).split('b')[1].zfill(jobs_len)
scenarios.append(scenario)
# 2. 遍历每个场景,计算其概率和总产出
scenario_outcomes = []
for scenario in scenarios:
scenario_hours_won = 0
scenario_probability = 1.0 # 使用浮点数确保精确度
for j, b in enumerate(scenario):
if b == '0': # 任务失败
scenario_probability *= (1 - probabilities[j])
else: # 任务成功
scenario_probability *= probabilities[j]
scenario_hours_won += hours[j]
scenario_outcomes.append((scenario, scenario_probability, scenario_hours_won))
# 打印部分场景结果(可选)
print("部分场景及其概率和产出:")
for i, outcome in enumerate(scenario_outcomes[:5]): # 打印前5个场景
print(f" 场景 {outcome[0]} -> 概率: {outcome[1]:.6f}, 产出: {outcome[2]} 小时")
print("...")
# 3. 计算获得超过min_hours_desired小时产出的总概率
prob_desired_hours = sum([o[1] for o in scenario_outcomes if o[2] > min_hours_desired])
print(f'\n获得超过 {min_hours_desired} 小时产出的总概率: {prob_desired_hours:.6f}')
# 4. 验证所有场景概率之和是否为1(用于检查计算是否正确)
prob_check = sum([o[1] for o in scenario_outcomes])
print(f'所有场景概率之和(应为1): {prob_check:.6f}')
# 5. 生成总产出与对应概率的分布(用于绘制曲线或直方图)
possible_payouts = set(o[2] for o in scenario_outcomes) # 获取所有可能的产出值
payout_probabilities = dict()
for payout in possible_payouts:
# 累加所有产生相同产出值的场景的概率
payout_probability = sum([o[1] for o in scenario_outcomes if o[2] == payout])
payout_probabilities[payout] = payout_probability
print('\n总产出与对应概率的分布:')
# 按照产出小时数排序后打印
sorted_payouts = sorted(payout_probabilities.items())
for payout, prob in sorted_payouts:
print(f" 产出 {payout} 小时: 概率 {prob:.6f}")
# 格式化输出为JSON,便于查看
# print(json.dumps(payout_probabilities, indent=2))通过系统地枚举所有可能的任务成功/失败场景,我们可以准确地计算出每种总产出的发生概率,从而得到一个完整的产出概率分布。这种方法对于任务数量不多的情况非常有效,能为业务预测提供坚实的数据支持。然而,随着任务数量的增加,其指数级的计算复杂度需要我们关注性能问题,并在必要时考虑采用更高效的近似算法。
以上就是基于独立概率事件的总产出估算方法的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号