
本文介绍了如何使用 Pandas DataFrame,基于指定列的相对范围,对数据进行分组聚合。通过 groupby() 和 transform() 函数,结合 lambda 表达式,实现对每个分组内,值在特定范围内的行进行求和,最终生成目标聚合结果。
在数据分析中,经常会遇到需要根据数据的相对范围进行聚合的需求。例如,对于某个关键列,我们需要将该列值在特定范围内的所有行进行求和,并将其作为新的聚合特征。 Pandas 提供了强大的 groupby() 和 transform() 函数,可以灵活地实现这种需求。
实现方法
以下代码展示了如何使用 Pandas 实现基于相对范围的值进行聚合:
import pandas as pd
# 示例数据
df = pd.DataFrame({
'key': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C'],
'value': [.1, 0.244, 0.373, 0.514, 0.663, 0.786, 0.902, 1.01, 1.151, 1.295, 1.434, 1.541, 1.679, 1.793, 1.94, 2.049, 2.164, 2.284, 2.432, 2.533, 2.68, 2.786, 2.906, 3.008, 3.136],
'desired_ouput': [1.231, 1.894, 2.68, 3.582, 3.482, 3.238, 2.865, 4.89, 6.431, 9.903, 11.843, 10.833, 11.731, 11.731, 9.002, 7.461, 11.462, 12.093, 17.785, 20.793, 21.765, 21.765, 19.481, 17.049, 14.516]
})
# 相对范围参数
N = 0.5
# 使用 groupby 和 transform 进行聚合
df["desired_output_2"] = df.groupby("key")["value"].transform(
lambda values: [
values[(values > (v - N)) & (values < (v + N))].sum() for v in values
],
)
print(df)代码解释
注意事项
总结
本文介绍了一种使用 Pandas DataFrame,基于相对范围的值进行聚合的方法。通过 groupby() 和 transform() 函数,结合 lambda 表达式,可以灵活地实现各种复杂的聚合需求。 这种方法简洁高效,避免了使用循环和条件判断语句,提高了代码的可读性和可维护性。
以上就是Pandas DataFrame:基于相对范围的值进行聚合的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号