
本文详细阐述如何在java中为推荐系统构建非加权图,以有效管理和识别用户间的复杂关系,如“密切联系人”。文章从数据读取和存储入手,逐步指导如何将人员信息转化为图的节点,并基于共享属性(社区、学校、雇主)定义边,最终形成邻接列表表示的图结构,并整合隐私设置,为后续的推荐逻辑奠定基础。
在构建推荐系统时,有效地表示和管理实体之间的关系至关重要。对于需要基于“密切联系人”概念进行推荐的场景,图数据结构提供了一种直观且强大的建模方式。本文将指导您如何在Java中,从原始文件数据出发,构建一个非加权图来表示人员之间的关系,并集成隐私设置。
首先,我们需要定义用于存储人员和活动信息的Java类。这些类将作为图的节点和相关属性的载体。
import java.util.Objects;
// Person 类用于存储人员信息
public class Person {
private String firstname;
private String lastname;
private String phone;
private String email;
private String community;
private String school;
private String employer;
private String privacy; // "Y" 表示请求隐私,"N" 表示不请求
// 构造函数
public Person() {}
// Getters and Setters
public String getFirstname() { return firstname; }
public void setFirstname(String firstname) { this.firstname = firstname; }
public String getLastname() { return lastname; }
public void setLastname(String lastname) { this.lastname = lastname; }
public String getPhone() { return phone; }
public void setPhone(String phone) { this.phone = phone; }
public String getEmail() { return email; }
public void setEmail(String email) { this.email = email; }
public String getCommunity() { return community; }
public void setCommunity(String community) { this.community = community; }
public String getSchool() { return school; }
public void setSchool(String school) { this.school = school; }
public String getEmployer() { return employer; }
public void setEmployer(String employer) { this.employer = employer; }
public String getPrivacy() { return privacy; }
public void setPrivacy(String privacy) { this.privacy = privacy; }
// 判断是否请求隐私
public boolean requestsPrivacy() {
return "Y".equalsIgnoreCase(privacy);
}
// 重写 equals 和 hashCode 方法,确保在集合(如Map的键)中正确识别Person对象
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Person person = (Person) o;
return Objects.equals(firstname, person.firstname) &&
Objects.equals(lastname, person.lastname) &&
Objects.equals(email, person.email); // 假设 firstname, lastname, email 组合唯一标识一个人
}
@Override
public int hashCode() {
return Objects.hash(firstname, lastname, email);
}
@Override
public String toString() {
return "Person{" +
"firstname='" + firstname + '\'' +
", lastname='" + lastname + '\'' +
", community='" + community + '\'' +
", school='" + school + '\'' +
", employer='" + employer + '\'' +
", privacy='" + privacy + '\'' +
'}';
}
}
// Activities 类用于存储活动信息 (在本教程中,活动信息不直接用于构建图,但作为原始数据的一部分保留)
public class Activities {
private String firstname;
private String lastname;
private String activity;
// 构造函数
public Activities() {}
// Getters and Setters
public String getFirstname() { return firstname; }
public void setFirstname(String firstname) { this.firstname = firstname; }
public String getLastname() { return lastname; }
public void setLastname(String lastname) { this.lastname = lastname; }
public String getActivity() { return activity; }
public void setActivity(String activity) { this.activity = activity; }
@Override
public String toString() {
return "Activities{" +
"firstname='" + firstname + '\'' +
", lastname='" + lastname + '\'' +
", activity='" + activity + '\'' +
'}';
}
}注意事项:
原始数据文件需要被读取并存储到易于操作的集合中。ArrayList 是一个合适的选择,用于临时存储所有 Person 和 Activities 对象。
立即学习“Java免费学习笔记(深入)”;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class InfoReader {
private List<Person> persons;
private List<Activities> activities;
public InfoReader() {
this.persons = new ArrayList<>();
this.activities = new ArrayList<>();
}
public void ReadInfo() {
// 读取人员数据
try {
// 请根据您的实际文件路径修改
String personFileLocation = "path" + File.separator + "to" + File.separator + "SamplefilePersons2022Oct31text.csv";
File personListFile = new File(personFileLocation);
Scanner personScanner = new Scanner(personListFile);
while (personScanner.hasNextLine()) {
String nextline = personScanner.nextLine();
String[] personComponents = nextline.split(",");
if (personComponents.length >= 8) { // 确保数据完整性
Person newPerson = new Person();
newPerson.setFirstname(personComponents[0].trim());
newPerson.setLastname(personComponents[1].trim());
newPerson.setPhone(personComponents[2].trim());
newPerson.setEmail(personComponents[3].trim());
newPerson.setCommunity(personComponents[4].trim());
newPerson.setSchool(personComponents[5].trim());
newPerson.setEmployer(personComponents[6].trim());
newPerson.setPrivacy(personComponents[7].trim());
this.persons.add(newPerson); // 将 Person 对象存储到列表中
}
}
personScanner.close(); // 关闭扫描器
} catch (FileNotFoundException e) {
System.err.println("人员文件未找到: " + e.getMessage());
throw new RuntimeException("无法读取人员数据", e);
}
// 读取活动数据
try {
// 请根据您的实际文件路径修改
String activityFileLocation = "path" + File.separator + "to" + File.separator + "SamplefileActivities2022Oct31text.csv";
File activityListFile = new File(activityFileLocation);
Scanner activityScanner = new Scanner(activityListFile);
while (activityScanner.hasNextLine()) {
String nextLine = activityScanner.nextLine();
String[] activityComponents = nextLine.split(",");
if (activityComponents.length >= 3) { // 确保数据完整性
Activities newActivity = new Activities();
newActivity.setFirstname(activityComponents[0].trim());
newActivity.setLastname(activityComponents[1].trim());
newActivity.setActivity(activityComponents[2].trim());
this.activities.add(newActivity); // 将 Activities 对象存储到列表中
}
}
activityScanner.close(); // 关闭扫描器
} catch (FileNotFoundException e) {
System.err.println("活动文件未找到: " + e.getMessage());
throw new RuntimeException("无法读取活动数据", e);
}
}
public List<Person> getPersons() {
return persons;
}
public List<Activities> getActivities() {
return activities;
}
}关键改进:
图由节点(Vertices/Nodes)和边(Edges)组成。
图的常见表示方法有邻接矩阵和邻接列表。对于稀疏图(边相对较少),邻接列表通常更高效,它使用 Map 来存储每个节点及其相邻节点列表。
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class Graph {
// 邻接列表:Map 的键是 Person 节点,值是其所有相邻 Person 节点的列表
private Map<Person, List<Person>> adjList;
public Graph() {
this.adjList = new HashMap<>();
}
// 添加一个节点到图中(如果它还不存在)
public void addPerson(Person person) {
adjList.putIfAbsent(person, new ArrayList<>());
}
// 添加一条边:将 person2 添加到 person1 的邻接列表中,反之亦然(无向图)
public void addRelationship(Person person1, Person person2) {
// 确保两个人都已作为节点存在
addPerson(person1);
addPerson(person2);
// 添加双向关系
if (!adjList.get(person1).contains(person2)) {
adjList.get(person1).add(person2);
}
if (!adjList.get(person2).contains(person1)) {
adjList.get(person2).add(person1);
}
}
// 获取某个人的所有密切联系人
public List<Person> getCloseContacts(Person person) {
return adjList.getOrDefault(person, new ArrayList<>());
}
// 打印图的结构
public void printGraph() {
for (Map.Entry<Person, List<Person>> entry : adjList.entrySet()) {
System.out.print("Person: " + entry.getKey().getFirstname() + " " + entry.getKey().getLastname() + " -> ");
for (Person neighbor : entry.getValue()) {
System.out.print(neighbor.getFirstname() + " " + neighbor.getLastname() + ", ");
}
System.out.println();
}
}
}现在,我们将读取的数据转换为图结构。核心逻辑是遍历所有人员对,检查他们是否符合“密切联系人”的条件,然后添加相应的边。
import java.util.List;
import java.util.Objects; // 用于Objects.equals的空值安全比较
public class GraphBuilder {
public static Graph buildRecommendationGraph(List<Person> persons) {
Graph graph = new Graph();
// 将所有人员添加到图中作为节点
for (Person p : persons) {
graph.addPerson(p);
}
// 遍历所有人员对,建立密切联系关系
for (int i = 0; i < persons.size(); i++) {
for (int j = i + 1; j < persons.size(); j++) { // 避免重复和自连接
Person p1 = persons.get(i);
Person p2 = persons.get(j);
// 判断是否为密切联系人:共享社区、学校或雇主
boolean isCloseContact = false;
if (p1.getCommunity() != null && !p1.getCommunity().isEmpty() &&
Objects.equals(p1.getCommunity(), p2.getCommunity())) {
isCloseContact = true;
}
if (p1.getSchool() != null && !p1.getSchool().isEmpty() &&
Objects.equals(p1.getSchool(), p2.getSchool())) {
isCloseContact = true;
}
if (p1.getEmployer() != null && !p1.getEmployer().isEmpty() &&
Objects.equals(p1.getEmployer(), p2.getEmployer())) {
isCloseContact = true;
}
if (isCloseContact) {
graph.addRelationship(p1, p2);
}
}
}
return graph;
}
// 整合隐私设置的推荐生成方法
public static List<Person> getRecommendedContacts(Person targetPerson, Graph graph) {
List<Person> recommendations = new ArrayList<>();
// 如果目标人员请求隐私,则不进行任何推荐
if (targetPerson.requestsPrivacy()) {
System.out.println(targetPerson.getFirstname() + " " + targetPerson.getLastname() + " 已请求隐私,不生成推荐。");
return recommendations;
}
// 获取目标人员的所有密切联系人
List<Person> closeContacts = graph.getCloseContacts(targetPerson);
// 过滤掉请求隐私的联系人
for (Person contact : closeContacts) {
if (!contact.requestsPrivacy()) {
recommendations.add(contact);
}
}
return recommendations;
}
public static void main(String[] args) {
// 1. 读取数据
InfoReader reader = new InfoReader();
reader.ReadInfo(); // 确保您已修改文件路径
List<Person> allPersons = reader.getPersons();
// List<Activities> allActivities = reader.getActivities(); // 活动数据在本例中不直接用于图构建
// 2. 构建图
Graph recommendationGraph = buildRecommendationGraph(allPersons);
System.out.println("--- 图结构 ---");
recommendationGraph.printGraph();
// 3. 生成推荐
System.out.println("\n--- 推荐结果 ---");
if (!allPersons.isEmpty()) {
// 假设我们想为列表中的第一个人生成推荐
Person personToRecommendFor = allPersons.get(0);
List<Person> recommendations = getRecommendedContacts(personToRecommendFor, recommendationGraph);
System.out.println("为 " + personToRecommendFor.getFirstname() + " " + personToRecommendFor.getLastname() + " 推荐的联系人:");
if (recommendations.isEmpty()) {
System.out.println(" 无推荐或所有密切联系人均已请求隐私。");
} else {
for (Person rec : recommendations) {
System.out.println(" - " + rec.getFirstname() + " " + rec.getLastname());
}
}
// 示例:为另一个可能请求隐私的人生成推荐
// 假设我们有一个名为 "John Doe" 的人,并且他请求了隐私
Person privacyRequester = new Person();
privacyRequester.setFirstname("John");
privacyRequester.setLastname("Doe");
privacyRequester.setPrivacy("Y"); // 设置为请求隐私
privacyRequester.setCommunity("SomeCommunity"); // 确保equals方法能匹配
privacyRequester.setSchool("SomeSchool");
privacyRequester.setEmail("john.doe@example.com");
// 假设 John Doe 也在 allPersons 列表中,或者我们只是模拟
// 如果不在列表中,getCloseContacts可能返回空,这里仅为演示隐私过滤
// 实际应用中,privacyRequester 应该来自 allPersons 列表
List<Person> privacyRecommendations = getRecommendedContacts(privacyRequester, recommendationGraph);
if (privacyRecommendations.isEmpty() && privacyRequester.requestsPrivacy()) {
// 已经打印了信息,这里不再重复
} else if (!privacyRecommendations.isEmpty()) {
System.out.println("为 " + privacyRequester.getFirstname() + " " + privacyRequester.getLastname() + " 推荐的联系人:");
for (Person rec : privacyRecommendations) {
System.out.println(" - " + rec.getFirstname() + " " + rec.getLastname());
}
}
} else {
System.out.println("没有读取到人员数据,无法生成推荐。");
}
}
}代码解析:
以上就是构建Java推荐系统中的非加权图及关系建模的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号