使用 Pandas json_normalize 展平嵌套 JSON 数据

碧海醫心
发布: 2025-10-16 11:04:10
原创
923人浏览过

使用 pandas json_normalize 展平嵌套 json 数据

本文旨在指导读者如何使用 Pandas 库中的 `json_normalize` 函数处理包含嵌套列表的 JSON 文件,将其转换为易于分析的表格数据。我们将详细介绍如何针对不同的嵌套层级进行展平操作,并演示如何将展平后的数据合并成一个完整的 DataFrame。通过本文的学习,读者将能够有效地处理复杂的 JSON 数据,并将其应用于实际的数据分析任务中。

准备工作

首先,确保你已经安装了 Pandas 库。如果没有安装,可以使用 pip 进行安装:

pip install pandas
登录后复制

加载 JSON 数据

假设我们有一个名为 data.json 的 JSON 文件,内容如下:

[{
  "uuid": "a2d89c9b-6e2e-4e3a-8d60-bf3ce2fe3fda",
  "timestamp": "2023-11-23 00:26:31.851000 UTC",
  "process_timestamp": "2023-11-23 00:26:32.326000 UTC",
  "visitor_id": "oeu1700282566730r0.9025758502018271",
  "session_id": "AUTO",
  "account_id": "25408250069",
  "experiments": {
    "list": [{
      "element": {
        "campaign_id": "26314710187",
        "experiment_id": "26322360336",
        "variation_id": "26314800349",
        "is_holdback": "false"
      }
    }]
  },
  "entity_id": "25754820685",
  "attributes": {
    "list": [{
      "element": {
        "id": null,
        "name": "",
        "type": "browserId",
        "value": "gc"
      }
    }, {
      "element": {
        "id": null,
        "name": "",
        "type": "campaign",
        "value": "blablabla"
      }
    }, {
      "element": {
        "id": null,
        "name": "",
        "type": "device",
        "value": "desktop"
      }
    }, {
      "element": {
        "id": null,
        "name": "",
        "type": "device_type",
        "value": "desktop_laptop"
      }
    }, {
      "element": {
        "id": null,
        "name": "",
        "type": "referrer",
        "value": "https://bookings.perrito.com/21df6542"
      }
    }, {
      "element": {
        "id": null,
        "name": "",
        "type": "source_type",
        "value": "campaign"
      }
    }, {
      "element": {
        "id": null,
        "name": "",
        "type": "currentTimestamp",
        "value": "1700699073915"
      }
    }, {
      "element": {
        "id": null,
        "name": "",
        "type": "offset",
        "value": "300"
      }
    }]
  },
  "user_ip": "72.38.10.0",
  "user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",
  "referer": "https://bookings.perrito.com/",
  "event_type": "other",
  "event_name": "transaction",
  "revenue": "240939",
  "value": null,
  "quantity": null,
  "tags": {
    "key_value": [{
      "key": "tour_id",
      "value": "386"
    }, {
      "key": "booking_id",
      "value": "123456"
    }, {
      "key": "payment_type",
      "value": "creditcard"
    }, {
      "key": "revenue",
      "value": "240939"
    }, {
      "key": "pax",
      "value": "1"
    }, {
      "key": "tour_name",
      "value": "Best Viaje ever"
    }, {
      "key": "extras",
      "value": "245.00"
    }]
  },
  "revision": "859",
  "client_engine": "js",
  "client_version": "0.188.1",
  "element": {
    "campaign_id": "26314710187",
    "experiment_id": "26322360336",
    "variation_id": "26314800349",
    "is_holdback": "false"
  }
}]
登录后复制

使用以下代码加载 JSON 数据:

import json
import pandas as pd

with open("data.json", "r") as f:
    data = json.load(f)
登录后复制

使用 json_normalize 展平数据

json_normalize 函数可以将 JSON 数据展平为表格形式。对于包含嵌套列表的 JSON,我们需要指定 record_path 参数来告诉函数需要展平的列表路径。

首先,定义一些顶层字段作为元数据,这些字段将作为索引字段保留在展平后的数据中:

meta = [
    "uuid",
    "timestamp",
    "process_timestamp",
    "visitor_id",
    "session_id",
    "account_id",
    "entity_id",
    "user_ip",
    "user_agent",
    "referer",
    "event_type",
    "event_name",
    "revenue",
    "value",
    "quantity",
    "revision",
    "client_engine",
    "client_version",
]
登录后复制

接下来,针对 experiments.list、attributes.list 和 tags.key_value 这三个嵌套列表分别进行展平:

Find JSON Path Online
Find JSON Path Online

Easily find JSON paths within JSON objects using our intuitive Json Path Finder

Find JSON Path Online 30
查看详情 Find JSON Path Online
experiments_list = pd.json_normalize(
    data=data,
    record_path=["experiments", "list"],
    meta=meta,
    record_prefix="experiments.list.",
)

attributes_list = pd.json_normalize(
    data=data,
    record_path=["attributes", "list"],
    meta=meta,
    record_prefix="attributes.list.",
)

tags_key_value = pd.json_normalize(
    data=data,
    record_path=["tags", "key_value"],
    meta=meta,
    record_prefix="tags.key_value.",
)
登录后复制

在上述代码中,record_path 参数指定了需要展平的列表路径,meta 参数指定了需要保留的元数据字段,record_prefix 参数用于为展平后的字段添加前缀,避免命名冲突。

合并展平后的数据

展平后的数据分别存储在 experiments_list、attributes_list 和 tags_key_value 三个 DataFrame 中。为了将这些数据合并成一个完整的 DataFrame,可以使用 pd.merge 函数:

out = (
    pd.merge(left=experiments_list, right=attributes_list, on=meta)
    .merge(right=tags_key_value, on=meta)
)
登录后复制

pd.merge 函数根据指定的元数据字段将 DataFrame 进行合并。注意,由于每个嵌套列表的长度可能不同,合并后的 DataFrame 可能会出现重复的行。

示例代码

以下是完整的示例代码:

import json
import pandas as pd

with open("data.json", "r") as f:
    data = json.load(f)

meta = [
    "uuid",
    "timestamp",
    "process_timestamp",
    "visitor_id",
    "session_id",
    "account_id",
    "entity_id",
    "user_ip",
    "user_agent",
    "referer",
    "event_type",
    "event_name",
    "revenue",
    "value",
    "quantity",
    "revision",
    "client_engine",
    "client_version",
]

experiments_list = pd.json_normalize(
    data=data,
    record_path=["experiments", "list"],
    meta=meta,
    record_prefix="experiments.list.",
)

attributes_list = pd.json_normalize(
    data=data,
    record_path=["attributes", "list"],
    meta=meta,
    record_prefix="attributes.list.",
)

tags_key_value = pd.json_normalize(
    data=data,
    record_path=["tags", "key_value"],
    meta=meta,
    record_prefix="tags.key_value.",
)

out = (
    pd.merge(left=experiments_list, right=attributes_list, on=meta)
    .merge(right=tags_key_value, on=meta)
)

print(out)
登录后复制

注意事项

  • 在使用 json_normalize 函数时,需要仔细分析 JSON 数据的结构,确定正确的 record_path 和 meta 参数。
  • 如果 JSON 数据中包含多个嵌套层级,可能需要多次调用 json_normalize 函数进行展平。
  • 合并展平后的数据时,需要注意数据重复的问题,可以根据实际需求进行去重或聚合操作。

总结

本文介绍了如何使用 Pandas 库中的 json_normalize 函数处理包含嵌套列表的 JSON 文件。通过指定 record_path 和 meta 参数,我们可以将 JSON 数据展平为表格形式,并使用 pd.merge 函数将展平后的数据合并成一个完整的 DataFrame。掌握这些技巧可以帮助我们更有效地处理复杂的 JSON 数据,并将其应用于实际的数据分析任务中。

以上就是使用 Pandas json_normalize 展平嵌套 JSON 数据的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号